Update: Identification of Regulatory Elements in Livestock Species

January 11, 2019

FAANG Workshop

H. Zhou¹, P. Ross¹, C. Kern¹, P. Saelao¹, Y. Wang¹, M. Halstead¹, K. Chanthavixay¹, X. Xu¹, I. Korf¹, M. Delany¹, H. Cheng², J. Medrano¹, A. Van Eenennaam¹, C. Tuggle³, and C. Ernst⁴, N. Trakooljul⁵, K. Wimmers⁵, Z. Jiang⁶ ¹University of California, Davis, Davis, CA, USA; ²USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, USA; ³Iowa State University, Ames, IA, USA; ⁴Michigan State University, East Lansing, MI, USA; FBN, Institute for Genome Biology, Dummerstorf, Germany; Washington State University, Pullman, WA, USA

Overall Goal

Generate a comprehensive resource of functional regulatory elements for the chicken, cattle, and pig genomes

Livestock breeds

- Adult stages
- > Chicken
 - > F1 (Line 6 x 7) from ADOL
 - > 2 males and 2 females
 - > 20 weeks of age

➤ Cattle

Line 1 Hereford from Fort Keogh

Livestock and Range Research Lab

- > 2 males and 2 females from same sire
- > 14 months of age

≻ Pig

- Yorkshire from MSU
- > 2 male littermates (castrated)
- ➢ 6 months of age

Tissues collected

Wide range of tissues collected

Total tissues collected:

- > Chicken: 29 tissues (92 samples:SAMEA4454482-4455404)
- > Cattle: 102 tissues (326 samples:SAMEA4454615-4455481)
- > Pig: 30 tissues (46 sampes:SAMEA4454570-4454614)

Scope of current project:

- > 2 male biological replicates from each species
- > 8 tissues: Adipose, Cerebellum, Cortex, Hypothalamus, Liver, Lung, Muscle, Spleen

- Stranded RNA-seq
- Chromatin accessibility: DNase-seq or ATAC-seq
- Histone modification marks
 - > H3K4me3 (promoters of active genes and transcription starts)
 - ➢ H3K27me3 (silence)
 - H3K27ac (active regulatory elements)
 - > H3K4me1 (enhancers and other distal elements)
- Transcription factor CTCF (insulator)

Current status

					-
RNA-seq	Data Analysis		Data Analysis		Data Analysis
DNase/ATAC-seq	Data Analysis		Data Analysis		Data Analysis
H3K4me3	Data Analysis		Data Analysis	Chromatin Sheared	Data Analysis
H3K27me3	Data Analysis		Data Analysis	Chromatin Sheared	Data Analysis
H3K4me1	Data Analysis	Chromatin Sheared	Data Analysis	Chromatin Sheared	Data Analysis
H3K27ac	Data Analysis	Chromatin Sheared	Data Analysis	Chromatin Sheared	Data Analysis
CTCF	Data Analysis	Chromatin Sheared	Data Analysis	Chromatin Sheared	Data Analysis
RRBS-seq	Data Analysis		Data Analysis		Data Analysis
WTTS-seq	Data Analysis		Tissues Collected		Tissues Collected

LncRNA paper published

Kern et al. "Genome-wide identification of tissue-specific long noncoding RNA in three farm animal species." BMC Genomics (2018) 19:684

Species	LncRNA Identified
Chicken	9,393
Cattle	7,235
Pig	14,428

Relationship to NCBI Annotation

Peak calls on ChIP-seqs

		-									
	H3K4me	3			H3K2/a	C			H3K4me	1	
	Chicken	Cattle	Pig		Chicken	Cattle	Pig		Chicken	Cattle	Pig
Adipose		21,534		Adipose		26,717		Adipose			
Cerebellum	24,980	30,708		Cerebellum	69,541	28,079		Cerebellum	56,046	23,960	
Cortex	22,966	25,201		Cortex	61,430	43,971		Cortex	53,459		
Hypothalamus		31,555		Hypothalamus		29,781		Hypothalamus		17,845	
Liver	20,881	30,554	31,614	Liver	27,601	85,069	55,513	Liver	37,289	63,211	47,684
Lung	16,099	34,923	27,696	Lung	30,701	53,851	71,055	Lung	14,477	58,986	68,057
Muscle	15,106	30,004		Muscle	15,909	61,325		Muscle	30,821	28,143	
Spleen	21,385	34,462	26,538	Spleen	33,174	52,154	68,111	Spleen	17,940	72,679	138,023

H3K27me3					
	Chicken	Cattle	Pig		
Adipose		19,519			
Cerebellum	52,337	44,292			
Cortex	33,315	11,907			
Hypothalamus		53,328			
Liver	48,600	28,194	69,015		
Lung	28,502	113,059	18,988		
Muscle		31,277			
Spleen	26,701	50,579	36,578		

CTCF Chicken Cattle Pig Adipose Cerebellum 51,254 Cortex 29,526 26,450 Hypothalamus 13,187 58,705 21,485 Liver 21,880 44,796 23,193 Lung 24,745 Muscle 12,203 30,909 11,580 35,082 Spleen 42,969

ChromHMM models for chromatin state prediction

- Three models were created, one for each species, using all data passing quality metrics for that species.
- A common model was learned across tissues, then used to produce distinct chromatin state predictions for each tissue.
- All three models were created with 14 states for consistency between species.

Active promoter states

Active promoters are defined by presence of H3K4me3

CTCF only appears in active promoters with H3K27ac

Bivalent promoter states

Only one bivalent state in chicken

- Cattle bivalent states are distinguished by presence of H3K4me1 or CTCF
- Pig bivalent states are distinguished by presence of H3K27ac
- Pig repressed state has weak H3K27me3 probability

Enhancer states

- Active enhancers have H3K27ac and H3K4me1, may or may not have CTCF
- Weak (lower confidence) enhancers have H3K27ac only
- H3K4me1 without H3K27ac indicates inactive enhancers

Insulator and quiescent states

- Three quiescent states in cattle have distinct transition probabilities to other states
- Multiple quiescent states may improve prediction of other states, as ChromHMM predictions are influenced by nearby genomic regions.

Predicted promoter states at TSS

- In all three tissues, more TSS in pig are in an active state compared to chicken and cattle.
- Most TSS are active or quiescent.

		Chicken	Cattle	Pig
	Active	38%	39%	49%
	Bivalent	7%	1%	6%
Liver	Repressed	7%	3%	5%
	Quiescent	42%	48%	36%
	Other	6%	9%	4%
	Active	34%	40%	45%
	Bivalent	5%	4%	9%
Lung	Repressed	6%	4%	4%
	Quiescent	51%	47%	34%
	Other	4%	5%	8%
	Active	37%	38%	46%
	Bivalent	4%	4%	7%
Spleen	Repressed	2%	4%	3%
	Quiescent	52%	49%	35%
	Other	5%	5%	9%

Note: "Other" includes mainly enhancer states, which may indicate promoter activity without H3K4me3.

Active enhancers in chicken and cattle

	Chicken			Cattle		
	Total	Tissue-specific		Total	Tissue-specific	
Adipose				11,927	2,904	24.35%
Cerebellum	29,440	6,249	21.23%	572	335	58.57%
Cortex	23,373	6,378	27.29%	24,864	6,690	26.91%
Hypothalamus				15,196	2,651	17.45%
Liver	20,390	5,974	29.30%	55,617	29,796	53.57%
Lung	16,339	4,232	25.90%	28,826	7,554	26.21%
Muscle	15,815	6,839	43.24%	24,816	12,763	51.43%
Spleen	16,905	5,546	32.81%	33,660	12,947	38.46%
		Average	29.96%		Average	37.12%

- Enhancers are known to be highly tissue-specific
- Muscle has the highest percentage of tissue-specific enhancers in chickens, and is also very high in cattle.

Enriched GO terms of closest genes to muscle-specific enhancers

Chicken

Cattle

Term	Fold Enrichment	FDR
muscle structure development	2.3	2.00E-02
process	1.4	2.10E-01
muscle tissue development	2.4	3.50E-01
regulation of nitrogen compound metabolic process	1.3	4.60E-01
regulation of cellular macromolecule biosynthetic process	1.4	7.00E-01
cellular macromolecule biosynthetic process	1.3	7.10E-01
regulation of macromolecule biosynthetic process	1.3	1.10E+00
STAT cascade	3	1.40E+00
striated muscle tissue development	2.3	1.70E+00
regulation of gene expression	1.3	2.20E+00
negative regulation of protein kinase activity	2.6	2.80E+00
negative regulation of protein modification process	2	2.80E+00
muscle organ development	2.3	3.00E+00
JAK-STAT cascade	2.9	3.10E+00
protein phosphorylation	1.5	3.20E+00

Fold Enrichment	FDR
2.1	4.20E-24
2.4	6.40E-24
3.4	7.10E-23
2	3.30E-22
1.7	1.50E-21
1.9	2.20E-20
1.8	2.90E-20
2.8	5.00E-20
1.9	6.70E-20
3	1.10E-19
2	4.40E-19
2.6	6.50E-19
2.5	7.60E-19
5.2	1.10E-18
2.2	4.10E-17
	Fold Enrichment 2.1 2.4 3.4 2 1.7 1.9 1.8 2.8 1.9 3 2 2.6 2.5 5.2 2.2

Conservation of muscle-specific enhancers

- UCSC liftOver tool used to map enhancers between chicken and cattle. No mapping available directly between chicken and cattle, so both were mapped to human
- ~20% of chicken enhancers and ~83% of cattle enhancers could be mapped to human genome coordinates
- 71 muscle-specific enhancers overlapped between species, which could be associated with 9 chicken genes and 11 cattle genes

Finish sequencing for the rest of assays

Integrative analysis with all assays by ChromHMM

Distribute raw and annotated data via Ensembl and UCSC

Additional posters

P0425: Correlating Gene Expression with the Histone Modifications H3K4me3 and H3K27ac in High and Low CpG Content Promoters of Chickens, Cattle, and Pigs

P0527: Predicting Chromatin States to Identify Distinct Active Enhancers within Bursa Tissue of Two Inbred Chicken Lines Under NDV Infection and Heat Stress

P0287: Visualizing Tissue-Specific Regulation of the Equine Genome Using Histone Modification ChIP-Seq

Acknowledgements

United States Department of Agriculture Agriculture

UC Davis: Dr. Gerald Quon

Stam Lab (U. Washington)

This project is funded by Agriculture and Food Research Initiative Competitive Grant no. 2015-67015-22940 and National Need Fellowship Award #20143842021796 from the USDA National Institute of Food and Agriculture.

Further funding provided by the U.S. Poultry, Cattle, and Swine Genomes Coordination Funds

V. Leesburg, USDA ARS Jim Kent, UCSC Laura Clarke, Paul Flicek, EBI Bin Ren, UCSD

UC Davis FAANG Group (chicken, pig, cattle and horse)

