Introduction to the FAANG project

Christopher K Tuggle
Department of Animal Science
Iowa State University

12 January 2018
ENCODE project

Purpose: to determine the functional elements of the human genome

Rationale for project
– SNPs associated with disease/traits are often inter-genic
– evolutionary comparisons have shown that some inter-genic and non-translated regions are strikingly well-conserved

So we must understand function of “non-genic” regions of genome!
ENCODE described

To understand function:

a) what part is transcribed into RNA? - **RNAseq**

b) what regulatory mechanisms control this transcription:

- **Landmarks bound by regulatory proteins**
- **Chromatin modifications** also mark transcription and “openness”
- **Methylation** of DNA is associated with regulation as well
- **Chromatin interactions**
ENCODE results

Collecting all these data (hundreds of experiments) allowed **predictive models** for genome function to be developed

- Predicts **Chromatin State** in the genome- OPEN or CLOSED, function

- Created a **Segmentation map of function** across the genome
Success in ENCODE required:

- High quality reference genome sequence
- **Standardized** infrastructure providing
 - Biological resources
 - Bioinformatics tools
 - Databases
- Effective coordination and communication

FAANG needs all these to succeed!
Main current activities

- Establish set of Core assays, begin to develop ENCODE-type functional data
- Develop tissue description, storage and sharing protocols
- Develop computational tools to analyze data
- Develop bioinformatics infrastructure
- Develop communication mechanisms
FAANG Pilot and FAANG-related projects

<table>
<thead>
<tr>
<th>Species</th>
<th>Leading Inst. & country</th>
</tr>
</thead>
<tbody>
<tr>
<td>pig, cattle, goat, chicken</td>
<td>INRA, France</td>
</tr>
<tr>
<td>pig, cattle, chicken</td>
<td>UC-Davis, US</td>
</tr>
<tr>
<td>horse</td>
<td>UC-Davis & Univ. Nebraska, US</td>
</tr>
<tr>
<td>cattle</td>
<td>Leibniz Inst. for Farm Anim. Biology, Germany</td>
</tr>
<tr>
<td>Sheep</td>
<td>Int. Sheep Genome Consortium & others, Australia & US</td>
</tr>
<tr>
<td>pig, chicken</td>
<td>Wageningen Univ., The Netherlands</td>
</tr>
<tr>
<td>cattle</td>
<td>Dairy Futures Coop. Res. Centre, AgriBio & others, Australia</td>
</tr>
<tr>
<td>cattle, pig</td>
<td>Alberta & Guelph Univ. & others, Canada</td>
</tr>
<tr>
<td>cattle and zebu</td>
<td>Adelaide Univ., Australia</td>
</tr>
<tr>
<td>sheep, buffalo</td>
<td>Roslin- Edinburgh Univ., UK</td>
</tr>
<tr>
<td>cattle</td>
<td>Washington State Univ., US</td>
</tr>
<tr>
<td>‘Arctic Ark’</td>
<td>Natural Resources Institute, Finland</td>
</tr>
</tbody>
</table>
Global FAANG Consortium

Organic growth of FAANG during 2015-2017
Current FAANG contributors = >350

2014 membership - GB authors
2017 membership
Institutions supporting FAANG

Join FAANG (it’s free!)
Visit: www.faang.org

Email us:
faang@animalgenome.org