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Summary The pioneering work by Professor Soller et al., among others, on the use of genetic markers

to analyze quantitative traits has provided opportunities to discover their genetic archi-

tecture in livestock by identifying quantitative trait loci (QTL). The recent availability of

high-density single nucleotide polymorphism (SNP) panels has advanced such studies by

capitalizing on population-wide linkage disequilibrium at positions across the genome. In

this study, genomic prediction model Bayes-B was used to identify genomic regions asso-

ciated with the mean and standard deviation of egg weight at three ages in a commercial

brown egg layer line. A total of 24 425 segregating SNPs were evaluated simultaneously

using over 2900 genotyped individuals or families. The corresponding phenotypic records

were represented as individual measurements or family means from full-sib progeny. A

novel approach using the posterior distribution of window variances from the Monte Carlo

Markov Chain samples was used to describe genetic architecture and to make statistical

inferences about regions with the largest effects. A QTL region on chromosome 4 was found

to explain a large proportion of the genetic variance for the mean (30%) and standard

deviation (up to 16%) of the weight of eggs laid at specific ages. Additional regions with

smaller effects on chromosomes 2, 5, 6, 8, 20, 23, 28 and Z showed suggestive associations

with mean egg weight and a region on chromosome 13 with the standard deviation of egg

weight at 26–28 weeks of age. The genetic architecture of the analyzed traits was char-

acterized by a limited number of genes or genomic regions with large effects and many

regions with small polygenic effects. The region on chromosome 4 can be used to improve

both the mean and standard deviation of egg weight by marker-assisted selection.
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Introduction

Understanding the factors that determine the phenotype has

been of interest to plant and animal breeders, geneticists

and evolutionary biologists. Reliable statistical methodology

has been developed to assess the proportion of differences in

phenotype between individuals that is because of genetics

vs. environment (Falconer & Mackay 1996; Lynch & Walsh

1998). Large changes in population means for important

economic traits have been obtained by selecting on in-

creased performance in livestock populations, including

layer chickens, without knowledge of the genetic architec-

ture of the complex quantitative traits that are of prime

interest. Advances in molecular genetics have provided

opportunities to identify genomic regions associated with

traits, based on the pioneering work of Professor Soller et al.

on the use of genetic markers to identify quantitative trait

loci (QTL) (Soller et al. 1976; Soller & Genizi 1978; Beck-

mann & Soller 1983, 1986, 1988; Soller & Beckmann

1990), as well as on the work of other groups (see review by

Weller 2009). Strategies for QTL detection in the chicken

were reviewed in Soller et al. (2006). The development of
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methodology and availability of data has resulted in the

detection of large numbers of QTL and estimates of their

effects on phenotype in the chicken (Tuiskula-Haavisto et al.

2002; Sasaki et al. 2004; Honkatukia et al. 2005; Schrei-

weis et al. 2006), as summarized in Abasht et al. (2006)

and available online in ChickenQTLdb (http://

www.genome.iastate.edu/cgi-bin/QTLdb/GG/index) (Hu

et al. 2010).

Opportunities to detect genomic regions associated with

traits of interest and to uncover the genetic architecture

(defined as the number and size of QTL) of quantitative traits

have been further advanced by the availability of genotypes

from high-density panels of single nucleotide polymorphism

(SNP) markers on large numbers of individuals. Such gen-

ome-wide association studies (GWAS) were pioneered pri-

marily in human genetics (Donnelly 2008) but also have

found rapid application in livestock genetics (Goddard &

Hayes 2009). For example, Hayes et al. (2010) used mixed

linear model methodology to estimate the proportion of

genetic variance associated with each genomic region of 50

SNPs from the Bovine 50k Illumina SNP chip for three

quantitative traits in dairy cattle. GWAS in livestock have

been further facilitated by the use of Bayesian variable

selection (BVS) models that were developed for the estima-

tion of breeding values based on high-density SNP data

through the concept of genomic prediction (Meuwissen

et al. 2001). To determine the significance of effects fitted in

such BVS models, Sahana et al. (2010) used the proportion

of samples of the Monte Carlo Markov Chain (MCMC) for

which the model included SNPs from a particular region of

the genome. Onteru et al. (2011) and Fan et al. (2011) used

a bootstrap method to derive significance levels for the

proportion of genetic variance explained by genomic regions

with large effects in BVS models, but these are computa-

tionally very demanding as they entail repeated analysis of

1000 bootstrap samples of the original data.

Most genetic studies focus on the genetic basis of trait

means, but much less is known about the factors that

determine the level of variation for a trait. Increasing uni-

formity of egg weight, that is, reducing variation, is desired in

layer chickens because eggs of extreme sizes are not suitable

for automatic packing and are not economically desirable (i.e.

small eggs have low value and production of very large eggs is

not efficient) and, for reproducing parent stock, hatchability

of large eggs is reduced (Abiola et al. 2008). Several studies

conducted over the last 10 years (see review by Hill & Mulder

2010) suggest that the within-individual variation has a

substantial genetic coefficient of variation, although most

heritability estimates are low (based on either repeated re-

cords on the same individual or between family differences in

residual variance). Egg weight is known to change with age of

the layer, which is one of the sources of variability in egg

weight. This variability with age can be addressed by selec-

tion on estimates of breeding values from random regression

models, aimed at reducing the rate of increase in egg weight

with age (Arango et al. 2009). However, individuals also

vary in the level of uniformity of the weight of eggs laid at

specific ages, which will be quantified here by the standard

deviation (SD) between the weights of eggs laid by an indi-

vidual at a given age. For egg weight at 30 weeks of age, Wolc

et al. (2011) estimated heritabilities of 0.46 and 0.03 for the

mean and variance (based on between family differences) and

a correlation of 0.14 between estimated breeding values for

the mean and variance.

The concept of QTL affecting the variance of quantitative

traits (vQTL) has recently gained interest in plant and ani-

mal breeding, in part because of the increasing importance

of uniformity. The first of recently published studies on

vQTL for economically important traits was by Ordas et al.

(2008) on recombinant inbred lines of maize, in which they

found a significant vQTL for residual variation for days to

flowering and a suggestive vQTL for ear height and tassel

length. In animals, Yang et al. (2011) failed to detect sig-

nificant vQTL for backfat thickness in pigs. We are not

aware of studies that have reported vQTL for egg weight,

which could be due to the large data sets that are needed

because of low power to detect vQTL (Visscher & Posthuma

2010). Recently published methodological papers by Rön-

negård & Valdar (2011), who proposed a double-hierar-

chical model to simultaneously scan for QTL for the mean

and variance in experimental crosses, and Yang et al.

(2011), who used MCMC methods to sample marker effects

on mean and variance, reflect scientific interest in the area

of vQTL detection, along with its practical importance in

cases where increasing uniformity is of interest.

Against this background, the objective of this study was

to use a genome-wide association study on high-density

SNP data from a brown egg layer line to identify genomic

regions that are associated with the mean and SD of egg

weight at three different ages. BVS methods were used for

analysis, and novel methods to test for the significance of

associations were employed.

Materials and methods

Data

Egg weights measured to the nearest gram were collected at

three ages in the production cycle on hens from six gener-

ations of a purebred brown egg layer line: on the first three

eggs laid (EW1), on three to five eggs laid at 26–28 weeks of

age (EW2) and on three to five eggs laid at 42–46 weeks of

age (EW3). Hens were housed individually, and collected

eggs were individually weighed. After pre-correcting for the

station that was used to process the egg, the mean and SD of

egg weight were calculated separately for each bird at each

age. Means and SD were then corrected for the effect of

hatch-week, using solutions from a single-trait animal

model that included hatch-week as a fixed effect. The

standard deviation rather than variance was used as a
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measure of variation in egg weight because it is on the same

scale as the mean, which makes it easier to interpret, and it

has better distributional properties (less skewed) than the

variance. Skew was not substantial for the mean [equal to

0.31, 0.29 and 0.20 for the means of EW1, EW2 and EW3

(EW1m, EW2m and EW3m) respectively], but distributions

of the SD were skewed to the right (skew equal to 1.54, 1.76

and 2.00 for EW1SD, EW2SD and EW3SD respectively).

This skewness is, however, not expected to affect results, in

particular because significance levels were determined

empirically (see later).

A custom Illumina SNP 42k Infinium chip, with SNPs that

covered the genome, was used for genotyping. After quality

checks, 24 425 markers on chromosomes 1–28, Z and two

unassigned linkage groups were used for subsequent analy-

ses. Quality checks included the proportion of missing geno-

types <0.05, minor allele frequency (MAF) >0.025 and

detected parent–offspring mismatches <5%. These edits ac-

counted for 9%, 88% and 2% of removed SNPs respectively.

In total, over 2900 phenotype–genotype records from the

first five available generations were used to estimate SNP

effects, which will be referred to as the training data. This

included over 1400 hens with individual phenotypes and a

similar number of records that were represented by family

means (Table 1). The latter included animals that were

phenotyped but not genotyped themselves (over 10 500

hens) but that had both parents genotyped (all animals used

for breeding across the six generations were genotyped, in

total 530 sires and 1555 dams). Family means were linked to

the average genotype of their parents with residuals weighted

by wp ¼ 1�h2

ð1�0:5 h2Þ=p
to account for the additional residual

variance and different family sizes p (Garrick et al. 2009).

Validation data

A total of 287 genotyped and phenotyped progeny and

306 grand-progeny of the last generation of training

individuals were used to validate the estimated effects, and

these will be referred to as the validation data. The con-

firmation of the estimated SNP effects in animals whose

phenotypes were not used for estimation (training) in-

creases the confidence in the associations detected in the

training data.

Statistical analyses

Bayesian variable selection method Bayes-B (Meuwissen

et al. 2001) was used to analyze all SNPs simultaneously,

using GENSEL software (Fernando & Garrick 2009). Each trait

(mean and SD within each age) was analyzed separately,

with SNP allele substitution effects fitted as random effects.

By fitting all SNPs simultaneously, the Bayes-B method has

been shown to account implicitly for population stratifica-

tion (see for example Toosi et al. 2010), without requiring a

polygenic effect with relationships to be fitted. The Bayes-B

method has been shown to map QTL precisely in simulation

studies (Sun et al. 2011) without much overestimation of

significant effects, in contrast to expectations from single

SNP methods (Beavis 1998). Parameter p, which is the

prior proportion of SNPs that is assumed to have no effect

on the trait within an iteration of the MCMC chain, was set

at 99.5%. Choice of p was motivated by allowing only re-

gions with strong association with traits to be fitted,

assuming that about 100–150 regions would explain the

majority of genetic variance in the mean and SD of egg

weight. Priors for genetic and residual variances for each

trait were obtained from a single-trait pedigree-based REML

analysis. A chain of 25 000 iterations was used, of which

the first 3000 were discarded as burn-in.

For significance testing in a Bayesian GWAS, Onteru et al.

(2011) and Fan et al. (2011) used a bootstrapping method

to generate a distribution for the window variance accord-

ing to the null hypothesis of no QTL within that window.

Although conceptually appealing, this method is computa-

tionally very demanding. For the current study, an alter-

native approach was used, which has been implemented in

version 4.0 of the GENSEL software (http://bigs.ansci.

iastate.edu/). This approach was based on the property that,

after burn-in, each iteration of the MCMC chain provides

samples of the posterior distribution of parameters of

interest. For each SNP, these samples can be used to obtain

a posterior probability of inclusion (PPI), which is the pro-

portion of samples in which a given SNP was included in the

model with a non-zero effect, and to estimate the genetic

variance explained by each SNP. However, because of link-

age disequilibrium, the effect of a QTL may be spread over a

number of neighboring SNPs, each having relatively small

variance and low PPI. Thus, to quantify the combined effect

of a genomic region that may be associated with QTL, the

genome was divided into 1042 non-overlapping windows of

1 Mb based on Build WUGSC 2.1/galGal3 (http://genome.

wustl.edu/genomes/view/gallus_gallus/#sequences_maps).

Table 1 Basic statistics (mean and standard deviation) for the pheno-

typic traits in the training data defined as the mean and standard

deviation of egg weight (g) of the first three eggs (EW1m and EW1SD),

eggs laid between 26 and 28 weeks of age (EW2m and EW2SD) and

eggs laid between 42 and 46 weeks of age (EW3m and EW3SD) for

genotyped animals with own phenotype and for progeny of genotyped

birds (all parents were genotyped), which were incorporated as family

means.

Own phenotype Progeny

N Mean Standard

deviation

N Mean Standard

deviation

EW1m 1398 45.6 4.50 10 482 46.0 4.99

EW2m 1482 58.0 4.12 10 796 57.5 4.87

EW3m 1483 62.5 4.32 2255 62.6 4.90

EW1SD 1395 2.72 1.77 10 468 2.69 1.74

EW2SD 1482 1.69 1.02 10 762 1.79 1.11

EW3SD 1482 1.87 1.00 2252 1.95 1.15
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For each window and each 50th iteration of the chain,

sampled values for the effects of the SNPs in the window

were then used to compute a sample of the posterior dis-

tribution of the true breeding value for that window for each

individual by multiplying the sampled SNP effects with the

individual�s SNP genotypes and summing across all SNPs in

the window. The variance across individuals of the resulting

sample breeding values ascribed to each window (�window

variance�) was then used to provide a sample of its posterior

distribution. Resulting sample window variances were di-

vided by the variance explained by all SNPs across the

genome in that iteration of the MCMC chain to convert

window variances to proportions of genetic variance ex-

plained by the window. The cumulative distribution of

window variances ranked by size was used to infer aspects

of the genetic architecture of the studied traits, namely the

number and effect sizes of QTL. Windows that captured

more than 0.1% of genetic variance in over 90% of the

samples were declared to explain significantly more vari-

ance than expected. The cutoff of 0.1% was chosen because

it is the expected percentage of genetic variance explained

by each of �1000 1-Mb windows across the genome under

a pure polygenic model.

Within each of the significant windows, the SNP with the

highest PPI and that explained the largest proportion of

genetic variance was chosen as a candidate SNP. Signifi-

cance of the candidate SNP was verified in the validation

data, that is, data on progeny and grand-progeny of the last

generation of training individuals. A single SNP analysis

was used for this purpose, by fitting SNP genotype as a fixed

effect in an animal model with ASREML (Gilmour et al. 2008),

along with the fixed effect of hatch-week. A model fitting the

interaction between SNP genotype and generation was also

applied to the full data set (training plus validation) in the

ASREML analysis to evaluate the consistency of estimates

across generations and to check for spurious associations

from potential confounding between changes in egg weight

across generations and random changes in allele frequen-

cies. The significance in validation was also evaluated for

the SD of log-transformed egg weights to remove the effects

of a potential mean–variance relationship that could origi-

nate from simple multiplicative effects.

Results

The estimates of heritability based on the posterior means of

the proportion of genetic variance associated with all SNPs

across the genome ranged from 0.38 to 0.47 for mean egg

weight and from 0.035 to 0.051 for the SD of egg weight

(Table 2). These estimates were at least 30% lower than

estimates of heritability obtained from multi-trait pedigree-

based analyses (Table 2), likely because of the high value of

p used in the Bayesian analyses. Estimates of genetic cor-

relations from pedigree-based analysis between the same

trait measured at different ages were >0.8 for means and

>0.6 for SD (Table 2). Estimates of genetic correlations be-

tween the mean and SD of egg weight at a given age were

positive and moderately high, ranging from 0.54 to 0.74.

A Manhattan plot of the posterior mean of the variance of

true breeding values for each 1 Mb window across the

genome (Fig. 1) shows that regions with large effects were

consistent across the three ages for mean egg weight but

less consistent for the SD of egg weight. Histograms for

posterior means of window variances for EW2m and

EW2SD are presented in Fig. 2. The estimate of the genetic

variance explained was >1% for 12 windows for EW2m and

15 windows for EW2SD, and >2% for six windows for

EW2m and seven windows for EW2SD. The largest pro-

portion of the genetic variance explained by any window

was estimated to be 28% for EW2m and 5.3% for EW2SD.

Similar results were observed at other ages, with the largest

effects being greater for the mean than for the SD.

The cumulative distribution of window variances when

ranked by size shows that a limited number of windows

were sufficient to explain over 50% of the genetic variance:

about 20 for means and over 40 for SD traits (Fig. 3). The

proportions of genetic variance explained by each window

are not guaranteed to sum to 100% across the genome

because non-zero covariances between regions are ignored

in the simple sum. As the simple sums of window variances

were >100%, the covariances between regions were on

average negative. Most windows for which the estimates of

the variance explained exceeded the polygenic expectation

of 0.1% of genetic variance did so in less than 90% of

posterior samples of the MCMC and were, therefore, deemed

not significant. Those that exceeded the 0.1% variance

expectation in 90% of posterior samples were declared sig-

nificant and are summarized in Table 3.

Table 2 Estimates of heritability (bold, on the diagonal), genetic (above

diagonal) and phenotypic (below diagonal) correlations between the

mean (m) and standard deviation (SD) of egg weight at different ages

from a multi-trait model using pedigree relationships, and estimate of

heritability based on the Bayesian whole-genome marker analysis.

EW1m EW1SD EW2m EW2SD EW3m EW3SD

EW1m 0.662 0.54 0.88 0.65 0.83 0.72

EW1SD 0.13 0.077 0.60 0.68 0.53 0.61

EW2m 0.69 0.13 0.749 0.62 0.96 0.75

EW2SD 0.16 0.05 0.18 0.096 0.60 0.96

EW3m 0.63 0.08 0.78 0.19 0.727 0.74

EW3SD 0.14 0.04 0.18 0.10 0.19 0.069

Heritability from

markers

0.383 0.035 0.467 0.051 0.447 0.048

For pedigree-based analysis, SE were 0.02–0.03 for h2 of egg weight

means and 0.01–0.02 for h2 of standard deviation, 0.01–0.02 for ge-

netic correlations between means, 0.05–0.06 for genetic correlations

involving early SD and 0.1–0.15 for genetic correlations involving late

SD.
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The top SNP from each significant window (listed in Ta-

ble 3) were fitted one at a time as a fixed effect in an animal

model using ASREML. Models that fitted both an additive and

a dominance effect of the SNP did not reveal significant

deviations from additivity (P > 0.05) for any SNP, and

therefore, only additive allele substitution effects were fitted.

Estimates by generation of allele substitution effects fitted to

the full data set (training plus validation) are shown in

Fig. 4 and were consistent for most of the top SNPs. Only

the SNP on chromosome 13 for EW2SD and SNP

rs14491030 on chromosome 4 for EW3m showed signifi-

cant interactions with generation (P-values 0.05 and 0.03

respectively). In the following, results for the mean and SD

of egg weight for specific regions are described in further

detail.

Egg weight mean

The highest proportion of genetic variance (30%) was ex-

plained by a window on chromosome 4 (Fig. 1) for mean

weight of the first three eggs, with the highest PPI for two

adjacent SNPs (PPI = 1 and 0.34, Table 3). These SNPs

were approximately 50 Kbp apart but were not in high

linkage disequilibrium with each other (r2 = 0.25). The

EW1m

EW2m

EW3m

EW1SD

EW2SD

EW3SD
Figure 1 Proportion of genetic variance ex-

plained by each 1-Mb SNP window across the

genome for the mean and standard deviation

of egg weight of the first three eggs (EW1m

and EW1SD), eggs laid between 26 and 28

weeks of age (EW2m and EW2SD) and eggs

laid between 42 and 46 weeks of age (EW3m

and EW3SD). Arrows point to the windows

that explain a significant amount of variation

and different colors code the consecutive

chromosomes.
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Figure 2 Histogram of the proportion of genetic variance explained by 1-Mb SNP windows across the genome for the mean and standard deviation

of early egg weight.
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same region explained 28% of the genetic variation for EW2

and 22% for EW3. The frequency of the favorable alleles at

these two SNPs increased over the five analyzed generations

from 0.73 to 0.82 for rs14491030 and from 0.41 to 0.56

for rs14699480. To avoid spurious associations owing to

potential confounding of changes in allele frequencies and

egg weight over generations, SNP effects were also esti-

mated within each generation by including the interaction

of SNP and generation in an ASREML analysis. The SNP effect

estimates were consistent across generations (Fig. 4), and

the interaction for the top SNP was not significant for mean

egg weight at any age (P > 0.05). This region was also

highly significant (P < 2 · 10)9) in the validation data.

The second important region for mean egg weight,

explaining 2 and 3% of genetic variance for EW1 and EW2

respectively was located on chromosome 8 (Table 3). The

SNP with the highest PPI in this region was significant in

validation for EW2m (P = 0.002) but not for EW1m

(P = 0.11).

Another two regions, on chromosomes 2 and 6, were

found to explain a significant proportion of variation for

EW2 and EW3, but only the first was confirmed in valida-

tion (Table 3). Other windows that explained a substantial

proportion of variation in mean egg weight appeared to be

age specific. The two significant SNPs on chromosome Z for

EW2m were in perfect linkage disequilibrium (r2 = 1). None

Table 3 One mega base windows that explain a significant proportion of variation (probability > 90% of window variance > 0.1%) and results for

the most significant SNPs within these windows and P-values of the effect of these SNP in validation.

Significant 1 Mb window Most significant SNP within the window

Trait Chromosome

1 Mb window

number

% genetic

variance

Number of

SNPs

Probability

> 0.1 SNP

Position

(kb)

Posterior

Probability of

Inclusion

% genetic

variance

SNP

P-value

in validation

EW1m 4 78 30.3 20 1.000 rs14491030 78775527 1.00 38.5 9.9 · 10)14

5 56 1.7 29 0.995 rs13592733 56230958 0.88 1.8 0.046

8 24 2.2 28 0.991 rs14652932 24651218 0.95 2.7 0.11

EW1SD 4 78 15.7 20 0.984 rs14491030 78775527 0.97 21.3 0.005

EW2m 2 21 2.2 25 0.950 rs13541562 21545338 0.93 2.6 0.002

4 78 28.0 20 1.000 rs14491030 78775527 1.00 24.4 1.4 · 10)15

rs14699480 78724797 0.99 4.6 2.2 · 10)10

6 21 3.3 27 1.000 rs14581563 21376191 0.99 4.2 0.21

rs14762454 32441589 0.56 0.3 5.4 · 10)5

6 32 2.0 29 1.000 rs10722133 32368872 0.99 2.5 0.96

6 33 1.2 24 0.966 rs14593588 33178622 0.65 0.7 0.44

8 24 3.3 28 1.000 rs14652932 24651218 0.97 3.8 0.002

20 7 1.1 22 0.957 rs13632881 6412107 0.78 0.9 0.54

23 2 1.6 18 0.943 rs13529891 1576845 0.65 0.8 0.67

0.943 rs14288877 1516675 0.19 0.06 0.56

28 2 1.2 35 0.979 rs13546044 1991551 0.98 1.5 0.33

Z 32 2.7 25 0.977 rs14762500 32384275 0.40 0.7 5.4 · 10)5

EW2SD 13 4 5.3 20 0.920 rs14055479 3501201 0.87 5.8 0.20

EW3m 2 21 3.9 25 0.989 rs13541562 21545338 0.73 2.5 0.005

4 78 22.3 20 1.000 rs14491030 78775527 1.00 22.7 2.02 · 10)9

rs14699480 78724797 0.57 1.1 6.9 · 10)8

6 21 2.4 27 0.948 rs14581563 21376191 0.92 2.5 0.68

Chromosome and position in Mb of the significant windows, number of SNPs in the window, % of genetic variance explained by each window in

training, probability of window variance > 0.1%, rs name and chromosome position of the most significant SNP in the window, posterior probability

of inclusion and proportion of genetic variance explained by the most significant SNP in training, P-value for significance of additive SNP effect in the

validation set.

EW1m

EW2m

EW3m

EW1SD

EW2SD

EW3SD

Figure 3 Cumulative proportion of variance explained by 1 Mb win-

dows, ranked by size. The asymptote exceeds 100% because the

accumulation assumes that the window effects are independent, but

they may be correlated.
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of the regions that explained <2.5% of genetic variance

were confirmed in validation (Table 3).

Egg weight standard deviation

The same chromosomal region on chromosome 4 as for the

mean showed the strongest association for SD of egg weight

for EW1SD (16% of genetic variance) and EW3SD (3%) and

the second strongest association for EW2SD (5%) (Fig. 1).

However, this window reached the significance level (based

on window variance >0.1% in over 90% of iterations) only

for EW1SD and was also validated only for EW1SD (Ta-

ble 3), but the direction of the effect was consistent across

ages. An additional region on chromosome 13 was signifi-

cant for EW2SD (Table 3), but the SNP with the strongest

signal in this window was not significant in the validation

data.

Discussion

Genomic regions associated with the mean and standard
deviation of egg weight.

In this study, a region on chromosome 4 was found to have

a strong association with both the mean and SD of egg

weight at three specific ages, although its effects on SD at

the two later ages were not significant (Fig. 1, Table 3).

Estimates of effects of this region were consistent across

generations and in independent validation data (Fig. 4). A

similar region on chromosome 4 was previously reported to

be associated with egg weight by Tuiskula-Haavisto et al.

(2002), Sasaki et al. (2004) and Schreiweis et al. (2006) in

F2 crosses using microsatellite markers and by Arango et al.

(2008) in a White Leghorn line. To our knowledge, how-

ever, this is the first study reporting genomic regions for SD

in egg weight, including this important vQTL on chromo-

some 4.

Alleles at SNPs in the chromosome 4 region that in-

creased the mean also increased the SD, but effects on the

SD were greater than could be explained by simple scale

effects. For example, for EW2, the effect of the QTL on

EW2m was about 4% of the mean egg weight, whereas its

effect on EW2SD was about 5% of the mean SD. In addition,

in the training data, this region was also significant

(P < 0.03) as a main effect across generations for the SD

when the SDs of log-transformed data for EW2 and EW1

were analyzed.

Several of the other chromosomal regions showing

association also were identified in previously reported QTL

studies. A region on chromosome Z with significant effects

for egg weight reported by Tuiskula-Haavisto et al. (2002)

was located close to one identified in our study. A QTL for

late egg weight (46–61 weeks) on chromosome 2 also was

suggested by Tuiskula-Haavisto et al. (2002) and Honka-

tukia et al. (2005). Sasaki et al. (2004) found a suggestive

association with egg weight between microsatellites in a

different region than we identified on chromosome 5. The

ChickenQTLdb (http://www.animalgenome.org/cgi-bin/

QTLdb/GG/index) does not show any egg weight QTL on

chromosome 6. However, in the chromosome 6 region that

we identified for egg weight, several studies have reported

QTL for body weight (Sewalem et al. 2002; Carlborg et al.

2003; Siwek et al. 2004; Le Rouzic et al. 2008), a trait

strongly correlated with egg weight. The impact of the QTL

for egg weight identified in this study on body weight

requires further investigation.

EW2m

EW1m EW3m EW1SD EW2SD

Figure 4 Estimates of allele substitution effects

within each generation for the SNP from win-

dows that explain a significant proportion of

variation. SNPs are identified on the horizontal

axis by chromosome number_1 Mb window

on the chromosome, corresponding to Table 3.

Estimates of allele substitution effects are sta-

ndardized by the marker-based genetic stan-

dard deviation for the trait.
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Significance testing and genetic architecture

Most of the SNPs with large effects were found to have

consistent effects across generations and were confirmed in

the validation data. However, SNPs that explained less than

2.5% of genetic variance in the training data were not

confirmed in validation. This could indicate false positives or

that the validation data set was not of sufficient size to

confirm the association found in the training data. In some

cases, the effect of the 1-Mb window was captured by

multiple SNPs. For example, the most significant SNP from

the window on chromosome 28 for EW2m (Table 3) was

only marginally significant (P = 0.04) in the whole data set,

but other SNPs with sizable PPI in the same window could

have contributed to the overall significance of the window.

In general, the proportion of variance explained by all

SNPs across the genome was over half that of pedigree-

based estimates of heritability for these traits in this popu-

lation (Table 2) and in other layer lines (Wolc et al. 2011).

This suggests that the fitted markers captured a sizeable

portion of the additive variation through linkage disequi-

librium with QTL and/or relationships. If more markers

were allowed to be fitted in the model (here 99.5% of

markers were assumed to have no effect within a given

iteration of the MCMC chain), the proportion of variance

explained by markers increased and approximated pedigree-

based estimates of heritability (details not shown). In hu-

man genetics, the missing heritability problem (Maher

2008), that is, the general finding that markers explain only

a small proportion of genetic variance estimated from ped-

igree, even for complex traits with high heritability such as

height, has garnered much attention in recent years. Yang

et al. (2010) showed that this is in part explained by initial

studies focusing only on SNPs with significant effects.

Nevertheless, even when fitting all SNPs simultaneously, as

in the present analyses, Yang et al. (2010) were able to

account for only 45% of the genetic variance estimated from

pedigree for human height. The additional missing herita-

bility was attributed to incomplete linkage disequilibrium

between markers and QTL. Yang et al. (2010) based their

analysis on nominally unrelated individuals, in stark con-

trast to our data set, which included strong family rela-

tionships. In data sets such as ours, markers also explain

relationships (Habier et al. 2007), which likely explains our

finding that nearly all genetic variance could be accounted

for when more markers were included in the model with a

low value of p.

To explore the genetic structure of three traits in Holstein

dairy cattle, Hayes et al. (2010) estimated the distribution of

genetic variance explained by chromosomal segments of 50

SNPs from the 50-K bovine SNP panel, with contrasting

results by trait. A small proportion of the genome (<2%)

explained over 80% of the genetic variance for fat per-

centage in milk (their Fig. 5), mainly because of the pres-

ence of one major gene (DGAT1). Three windows with large

effects were found for black coat color, but about 50% of the

genome was needed to explain 80% of the genetic variance.

No windows with major effects were identified for overall

type, for which 60% of the genome was needed to explain

over 80% of the genetic variance. In general, they con-

cluded that, apart from a few genes of major effect, the

genetic architecture of the three traits they studied was

characterized by a large number of genes of very small ef-

fects, in agreement with results for complex traits in hu-

mans (Yang et al. 2010). This general conclusion was also

confirmed by our study of egg weight and SD of egg weight,

in which a small number of 1-Mb windows with relatively

large effects accounted for about 50% of the genetic vari-

ance for the mean and 35% for the SD, with the remaining

variation spread over multiple windows with small effects.

To explain over 80% of the genetic variance (Fig. 3), over

10% of the genome was needed for the mean but over 25%

for the SD.

Our results for the distribution of effects of genomic re-

gions may not be directly comparable with those of Hayes

et al. (2010) because of differences in methodology. Their

results may be affected by double counting because the

variance contributed by each region was estimated in sep-

arate analyses; indeed, the sum of variances across regions

was substantially greater than the total genetic variance

(twofold for fat percentage and proportion black) (Hayes

et al. 2010). Although we avoid this double counting by

fitting all regions simultaneously, in our study the sum of

window variances also exceeded the total genetic variance,

but by <20%, which was likely caused by covariance

Figure 5 Least square means for the mean (above horizontal axis) and

for the standard deviation (SD, below horizontal axis) of early egg

weight in birds that carry specific genotype combinations at the two

SNPs on chromosome 4 in the region affecting the mean and SD of egg

weight. Genotype combinations are ordered on the horizontal axis by

their impact on the mean. �Current� refers to the current population

means for the mean and SD of egg weight.
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between window variances. A sum greater than 100% is

consistent with the presence of negative covariances be-

tween genes affecting a trait that is expected as a result of

selection, that is, the Bulmer effect (Bulmer 1971), but

could also reflect negative sampling covariances owing to

confounding between neighboring windows. The greater

overestimation by the sum for mean egg weight compared

to SD could be consistent with stronger past selection on the

mean than on the SD.

Possible selection strategies

Two SNPs on chromosome 4 explained sizeable proportions

of variation for both the mean and the SD of egg weight and

could potentially be used for marker-assisted selection

(Soller 1978). First, the SD of eggs produced by a flock could

be reduced by producing commercial birds that have the

same genotype at this region, thereby removing the vari-

ance created by having birds with different genotypes in the

same flock. The impact of this for different genotypes under

an additive model at the two SNPs is illustrated in Fig. 5.

For the current population, this would reduce the between-

bird SD of egg weight at a given age by 0.31 g, a 6.6%

reduction in the SD. Birds used for commercial production

are typically the result of a four-way cross between parental

lines. By fixing parental lines for different combinations of

alleles at the two SNPs in this region, in principle any

combination of genotypes could be generated in the four-

way cross. Which genotype to target in the commercial

cross depends on its mean egg weight relative to the optimal

weight range of market eggs and the importance of

increasing uniformity beyond what would already be

achieved by fixing the genotype. For example, if the objec-

tive was to increase egg weight, the AABB genotype would

be preferred, but this would also result in an increase in the

within bird SD by 5.3% (Fig. 5). Production of AABb birds

would be expected to enable an increase in the mean by

0.77 g without increasing SD. Genotypes that decrease SD

are generally associated with a decrease in mean egg

weight, with the AAbb genotype resulting in the smallest

reduction in the mean (1.78 g) and a 5.3% decrease in SD.

As always, selection for specific marker genotypes within

parental lines must be weighed against the loss in selection

pressure on other genes and other traits that would

accompany such selection and is best accomplished by

including marker genotypes in an index (Settar et al. 2002).

Uniformity could be further improved by within-line selec-

tion for increased uniformity by standard quantitative ge-

netic means or using additional markers or whole-genome

genomic selection predictors for SD.
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