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Summary To dissect age-dependent quantitative trait loci (QTL) associated with growth and to

examine changes in QTL effects over time, the Gompertz growth model was fitted to lon-

gitudinal live weight data on 788 Scottish Blackface lambs from nine half-sib families. QTL

were mapped for model parameters and weekly live weights and growth rates using

microsatellite markers on chromosomes 1, 2, 3, 5, 14, 18, 20 and 21. QTL significance

(using a = 0.05 chromosome-wide significance thresholds, unless otherwise stated) varied

with age, and those for growth rate occurred earlier than equivalent QTL for live weight. A

chromosome 20 QTL for growth rate was significant from 4 to 9 weeks (maximum sig-

nificance at 6 weeks) and for maximum growth rate. For live weight, this QTL was sig-

nificant from 8 to 16 weeks (maximum significance at 12 weeks). A nominally significant

chromosome 14 QTL was detected for growth rates from birth to week 2 in the same

families and location as an 8-week weight QTL. In addition, at the same position on

chromosome 14, a QTL was significant for growth rate for 17–28 weeks (maximum sig-

nificance at 24 weeks). A chromosome 3 QTL was significant for weights at early ages (birth

to week 4) and a growth rate QTL on chromosome 18 was significant from 8 to 12 weeks.

Fitting growth curves allowed the combination of information from multiple measurements

into a few biologically meaningful variables, and the detection of growth QTL that were not

observed from analyses of raw weight data. These QTL describe distinct parts of an animal�s
growth curve trajectory, possibly enabling manipulation of this trajectory.

Keywords growth, growth model, growth parameter, growth rate, longitudinal trait,

marker assisted selection, quantitative trait loci, sheep.

Introduction

Growth is an economically important trait for the sheep

industry as it is directly related to meat production. Pro-

duction of faster-growing lambs would be highly beneficial

for producers because, apart from the fact that higher lamb

weight would mean greater revenues, it would result in

enhanced feed conversion efficiency. This would lead to

various benefits including lower production costs, higher

product yields, less nitrogenous-waste excretion into the

environment and decreased grazing pressure (Cockett et al.

2005). Genetic selection is a valuable approach for

achieving improved lamb growth. For more effective genetic

selection on growth, it is advantageous to identify the ge-

netic loci that influence growth in terms of body weight and

weight gain of each animal.

Several studies in livestock (although few in sheep) have

reported quantitative trait loci (QTL) associated with growth

traits in terms of average daily gain, weight at a specific age,

and days to reach a particular weight (e.g. Stone et al. 1999

for cattle; Nagamine et al. 2003 and Stearns et al. 2005 for

pigs). The majority of QTL mapping studies have used uni-

variate approaches to detect QTL, treating weights recorded

at a particular growth point as separate traits. This is despite

the fact that live weights across time comprise a longitudi-

nal trait that is a function of several physiological processes

and a composite of phenotypes recorded over time. Thus,

strong genetic correlations exist among live weights at dif-

ferent ages (Corva & Medrano 2001; Riggio et al. 2008),

although patterns of correlations often suggest additional

complexity. For example, using sheep data, Riggio et al.
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(2008) showed that inter-age genetic correlations for live

weight, whilst strongly positive, are often different from

unity, with the correlation decreasing as the time between

the weight measurements increases. Thus, it is likely that

distinct loci act on live weights at different growth stages.

For the detection of QTL that are associated with growth or

live weight, it would be beneficial to simultaneously analyse

multiple measurements and take account of the correlation

structure of measurements across time.

Fitting growth models on body weight data from different

time points and extracting the relevant growth parameters

provides a way to combine phenotypic information from

multiple measurements into a few variables in a biologically

meaningful manner. This approach has been previously

applied in livestock (Lopez et al. 2000, several species;

Schinckel et al. 2004, pigs; Lambe et al. 2006, sheep).

Flexible sigmoid curves, such as the logistic, the Brody,

Bertalanffy, Gompertz and Richards curves, often represent

the best fitting growth models and are extensively described

in the literature for livestock (e.g. Pittroff et al. 2008). Many

growth curve variables relevant to genetic studies may be

derived from such models, describing growth rates and live

weights, maximum growth rate and the age at which it is

predicted to occur, and mature weight.

In sheep, there is little published information on the

genetic control of growth curve variables and the different

stages of growth. A few studies have investigated the poly-

genic components of growth curve parameters using

growth models describing weight and growth rate (as the

derivative of the weight function) as a function of time, and

random regression methodology (Lewis & Brotherstone

2002; Lambe et al. 2006). These indicated that growth

variables are indeed heritable (Lewis & Brotherstone 2002)

and that genetic differences seem to exist among growth

parameters of various breeds (Lambe et al. 2006). Moreover,

the study conducted by Lambe et al. (2006) suggested that

early growth rate is a different genetic trait to later growth

rate. All these postulations support a hypothesis that

growth curve variables are under genetic regulation and

that they may constitute separate aspects of the complex,

longitudinal trait of growth. Validation of this assertion

requires a more detailed description of the genetic control of

growth. To this end, it would be informative to dissect the

genetic loci that underlie growth curve predictors.

To date, no QTL study on growth curve parameters has

been performed in sheep or any other livestock species,

although a Bayesian procedure for QTL detection using

prior information obtained from a growth model was

applied in pigs (Varona et al. 2005). The main objective of

this study was to identify and describe QTL in Scottish

Blackface sheep that directly influence longitudinal live

weights and growth as a process, using descriptors of

growth derived from fitted growth curves. We also aimed to

examine whether, for particular growth traits, the effects of

different QTL were constant over time or changed as the

animals grew. If the latter were the case, we were interested

in quantifying how the QTL effects changed over time.

Materials and methods

Animals and traits measured

The population studied has been previously described in

detail (Davies et al. 2006; Karamichou et al. 2006). In brief,

the population consisted of 830 Scottish Blackface lambs

from nine half-sib families, with progeny per family ranging

from 34 to 154 individuals. The animals were bred over a

3-year period (2001–2003). Standard records (such as

parentage, day of birth, sex, etc.) and weight measurements

at birth and at 4-week intervals after birth (up to 24 weeks)

were collected, ranging from 830 to 691 records per time

point. The distribution of live weights across age is given in

Fig. 1. The complete pedigree for this population contained

4866 animals, with records dating back to 1986.

Genotyping and linkage map construction

Lambs were genotyped for informative microsatellite

markers, i.e. markers that were heterozygous in their sire,

on chromosomes 1, 2, 3, 5, 14, 18, 20 and 21, as detailed

in Davies et al. (2006) and Karamichou et al. (2006). A

linkage map was constructed for the markers on each

chromosome using the �build�, �all� and �flips� options of

CRIMAP version 2.4 (Green et al. 1990). The marker order

with the highest likelihood was selected in order to con-

struct the consensus linkage map for each chromosome that

was subsequently used in all QTL analyses (Tables S1–S8).

The linkage maps constructed were in close agreement with

those from other mapping studies (Maddox et al. 2001;

Australian sheep gene mapping website: http://

rubens.its.unimelb.edu.au/~jillm/jill.htm).
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Figure 1 Distribution of live weights of Scottish Blackface lambs across

age (dots) and the average growth curve obtained after fitting the

Gompertz model to the weight data (solid line).

� 2008 The Roslin Institute and R(D)SVS, Journal compilation � 2008 International Society for Animal Genetics, Animal Genetics, 40, 165–175

Hadjipavlou and Bishop166



Phenotypic data treatment

Initially, live weights measured at birth and 4-week inter-

vals were treated as separate traits. Multiple regression

analyses were performed on each phenotype (using the

R statistical package) in order to identify significant fixed

effects. Fixed effects significant for all live weights were sex

(two levels), litter size (two levels), age of dam (four levels)

and year by management group (i.e. field) (six levels). The

day of birth or the age at the time of measurement was fitted

as a covariate for each trait. These fixed effects and cova-

riates were fitted in all subsequent regression analyses.

Growth model choice

Five growth functions were fitted to live weight measure-

ments from all 788 animals for which five or more data

points were available, using non-linear regression in SAS

(release 9.1). The non-linear growth functions fitted were

the generalized Michaelis–Menten (GMM) (Lopez et al.

2000), the Gompertz, the logistic, the Richards and the

exponential models. The Gompertz, logistic and Richards

functions have been described and applied by Renne et al.

(2003) and Lambe et al. (2006) and are special cases of a

more general model (Turner et al. 1976). The reparame-

terized version of the exponential model has been explained

by Bünger & Herrendörfer (1994) and employed by Lambe

et al. (2006). The formulas and parameter details for the

above growth functions are given in Table 1. These

parameterizations of growth models were chosen in order to

study parameters with direct biological interpretation as

explained previously in Renne et al. (2003).

Growth model choice followed a similar procedure as

described in detail by Pittroff et al. (2008). Specifically, each

model was first fitted to the dataset as a whole, i.e. one curve

fitted to all the data as shown in Fig. 1, and three models

were immediately rejected: (i) the logistic model provided a

poor fit to the live weight data and it generally would not

converge unless one of the model parameters was fixed a

priori; (ii) the exponential model fitted the live weight data

but no estimate for parameter CE was obtainable; (iii) the

Richards model converged for the live weight data, and

provided an overall good fit, as assessed by the residual

mean square (RMSQ), but resulted in a high correlation

between parameter estimates of C and D (r2 = 0.98). The

GMM and Gompertz models for growth provided a good

overall fit to the data, low correlations were observed

between the estimated parameters and the RMSQ were

comparable for the two models. Thus, the Gompertz and

GMM models were used to model live weights for each

animal separately, using both the NLIN procedure of SAS

(release 9.1) and the non-linear modelling procedure of JMP

(release 7; SAS Inst.). The JMP procedure provided graphical

representation of the fit whilst the model fitting iterations

were running, and thus allowed immediate examination of

prediction bias, i.e. systematic deviations between the

observed and fitted values.

Although the GMM model fitted the whole dataset well, it

provided a poorer fit when applied to individual animals,

resulting in negative predicted birth weights for some ani-

mals and implausible values for mature weight for 80 out of

788 animals, even when convergence was achieved. This

characteristic was also observed by Pittroff et al. (2008).

Therefore, the Gompertz growth model was chosen as it

converged for each of the 788 animals in the dataset and

had low apparent prediction bias, i.e. few systematic devi-

ations between the observed and fitted values.

The Gompertz model was then used to predict live weights

and growth rates at weekly intervals from birth up to

24 weeks of age for all 788 lambs. In addition, maximum

growth rate and time at maximum growth was estimated

for each lamb. The following equations were used:

yðtÞ ¼ Aef�e½BeðC�tÞ=A�g and dy=dt ¼ ½ðB=AÞe�yðtÞ ln½A=yðtÞ�;

where y(t) is the live weight at time t; A is the estimated final

body weight, kg; B is the maximum growth rate (average

daily gain), kg/day; C is the age at maximum growth rate,

days; and A/e is the live weight at maximum growth, kg.

Half-sib QTL regression model

QTL analyses were conducted using a univariate multi-

marker approach for interval mapping in half-sib families, as

described by Knott et al. (1996) and applied by the web-

based software package QTL EXPRESS (Seaton et al. 2002). The

probability of inheriting a particular sire allele was calcu-

lated at 1-cM intervals for each offspring, conditional on the

marker genotypes of the individual and its sire and on the

sire�s linkage phase. Subsequently, the trait phenotype was

regressed on the conditional probability of the offspring

genotypic inheritance for a given position. For each regres-

sion, an F-ratio of the full model including the significant

fixed effects (sex, litter size, age of dam and year by group),

Table 1 Growth model equations.

Growth function Parameters y(t)1

Generalized

Michaelis–Menten2

Wo, Wf, K, c (WoKc + Wft
c)/(Kc + tc)

Gompertz3 A, B, C Aef�e½BeðC�tÞ=A�g

Logistic3 A, B, C A{1 + e[4B(C)t/A)]})1

Richards4 A, B, C, D Af1þ Def½BðC�tÞðDþ1Þ1þ1=D �=Agg1=D

Exponential5 A, BE, CE A� ðA� CEÞe½BE t=ðA�CEÞ�

1y(t) is the live weight at time t.
2Described by Lopez et al. (2000).
3Reparameterizations described by Renne et al. (2003).
4Reparameterized by E. Schönfelder, Institut für angewandte Tierhy-

giene, Eberswalde, Germany (Lambe et al. 2006).
5Reparameterized as suggested by Bünger & Herrendörfer (1994).
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covariate (day of birth/age at measurement) and the inher-

itance probabilities vs. the same model without the inheri-

tance probabilities was calculated. The chromosomal

location with the largest F-ratio was taken to be the best

estimated position for a QTL for each trait. In addition, the

within-sire substitution effects for each sire family were

obtained from the analysis. An estimate of the overall QTL

effect was obtained by calculating the average of the abso-

lute values of the QTL allelic substitution effects across

families for which the QTL was significant. The proportion of

phenotypic variance (Vp), corrected for all fitted fixed effects

and covariates, that was explained by the QTL for each trait,

was estimated as 4 · (1 ) RMSQfull/RMSQreduced) (Knott

et al. 1996), where �full� is the model with the QTL effect

fitted and �reduced� is the model without the QTL effect.

Significance thresholds

Chromosome-wide empirical threshold values were deter-

mined for the test statistics obtained from the regression

analysis at a = 0.05 and 0.01 by applying 1000 chromo-

some-wide permutations for each trait (Churchill & Doerge

1994). Threshold values varied between chromosomes

depending on their length and marker content. For all

chromosomes, the nominal threshold for significance was

determined for a single test for QTL detection, using the

F-ratio (P < 0.05) for the model including the QTL as a

fixed effect [(9, 711–750) d.f.]. Thus the nominal F-ratio

was set to 1.89.

Traits analysed

Prior to QTL analysis, the distribution of each of the

extracted model variables (A, B, C) was examined and

extreme outliers deviating more than three standard

deviations from the mean were removed. The distribution of

the C-variable was skewed, and, therefore, the C estimates

were transformed using a natural log transformation. All

other parameters were analysed without transformation as

they appeared normally distributed.

Live weight at birth and each of 4-week intervals was

subjected to univariate interval QTL mapping for each chro-

mosome using data and marker genotype information at each

chromosome, as described above. Moreover, each of the

Gompertz model parameters [A, B, ln C], predicted growth

rates and live weights at weekly intervals and at maximum

growth (point of inflection), were analysed for QTL detection.

Results

Gompertz growth model description

The growth curve resulting from fitting the Gompertz model

to the combined live weight data from all animals is shown

in Fig. 1. For each model fitted and converged, the RMSQ

are shown in Table 2 along with F-ratios for the fit of the

model. The means for Gompertz model parameter estimates

(averaged across the predicted values for each of the 788

animals), their standard errors and asymptotic (i.e approx-

imate) 95% confidence intervals are given in Table 3. Live

weights were predicted at each 4-week time point for the

788 animals for which the Gompertz model was fitted, and

no significant differences were found between the predicted

and observed values at any age, using a t-test (results not

shown).

QTL results

All QTL for observed live weight whose significance exceeded

the 5% chromosome-wide threshold are reported in Table 4,

along with significant QTL for the Gompertz function

parameters. The live weight QTL were detected on the com-

plete dataset and no changes in the location or significance of

these QTL were observed when the dataset of observed live

weights was reduced to the 788 animals included in the

Gompertz model procedure (results not shown). Genetic

linkage map positions of genetic markers for the ovine

chromosomes studied are shown in Tables S1–S8.

Table 2 Non-linear regression least square statistics for each model

that fitted the entire live weight dataset1.

Model RMSQ F-ratio

Numerator

d.f.2 P-value

Gompertz 1569 68 769 3 <0.0001

Generalized

Michaelis–Menten

1538 52 648 4 <0.0001

Richards 1551 52 173 4 <0.0001

Exponential 12 085 10 975 3 <0.0001

1Model equations and the parameters fitted for each model are de-

scribed in Table 1.
2Numerator degrees of freedom (d.f.) corresponded to the number of

parameters fitted for each model. Denominator d.f. corresponded to

the residual d.f. and ranged from 5549–5551 across models.

Table 3 Estimated means and standard errors for Gompertz model

parameters and weight at point of inflection1.

Parameter

Sample

mean

Approx.

SEM

Approx. 95%

confidence interval

A (kg) 35.1 0.19 34.72–35.47

B (kg/day) 0.284 0.002 0.280–0.288

C (days) 36.9 0.32 36.27–37.54

ln C (ln days) 3.58 0.009 3.559–3.594

Weight at point

of inflection (kg)

12.9 0.08 12.77–13.07

SEM, standard error of the mean.
1The average of individual lamb means, predicted after fitting the

Gompertz model to live weight measurements for each animal, was

estimated for each parameter.
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For predicted live weight and growth rates, the detected

QTL tended to be significant over a period of 2 weeks or

more; F-ratio trajectories for these QTL are shown

in Figs 2–5, for chromosomes 20, 14, 3 and 18 respectively.

A summary of these QTL is provided in Table 5, giving

results for the time points at which the QTL were of maxi-

mum significance. Chromosome-wide significance thresh-

olds varied marginally over time, and the maximum

observed threshold on each chromosome across age for the

relevant traits is plotted in each figure. The F-statistic pre-

sented in the trajectories in Figs 2–5 is for the best estimated

position at each time point. Along each growth trajectory,

this position was consistent to within 1–3 cM. More

importantly, the QTL resided in the same marker interval

and was detected in the same families for all plots (con-

nected points) for predicted growth rate or weight.

The significance trajectories for a QTL on chromosome 20

for predicted growth rates and weights across age are given

in Fig. 2. The chromosome 20 QTL for growth rate became

significant (at the chromosome-wide level) at 3 weeks, its

significance maximized at 6 weeks and it retained at least

nominal significance up to 9 weeks (Table 5). A QTL lo-

cated in the same marker interval on chromosome 20 and

in the same families (5 and 6) was also highly significant for

maximum growth rate (parameter B of the Gompertz model;

Table 4). This QTL was apparent for predicted weight at a

later age, being nominally significant from 8 to 17 weeks,

with the highest F-ratio at 12 weeks (segregating in families

Table 4 Summary of the significant QTL for observed live weights and growth curve functions from across-family univariate QTL analyses.

Trait Chromosome

QTL

position

(cM)1 Marker interval F-ratio2

Families

significant3

% Vp

explained

by QTL4 QTL effect5

Birth weight (kg) 14 82 BMS833 4.13 (2.76, 3.38) 1, 6 14 0.912

8-week weight (kg) 14 110 ILSTS002–LSCV30 2.8 (2.47, 3.00) 3, 8 9 2.51

16-week weight (kg) 20 61 DRB1–TGLA387 2.53 (2.47, 3.03) 4, 6 8 4.63

Growth rate at point of

inflection (B) (kg/day)

20 60 DRB1–TGLA387 2.92 (2.41, 2.92) 5, 6 9 0.054

Age at point of inflection

(C or ln C)

14 98 ILSTS002–LSCV30 3.18 (2.37, 2.81) 8 11 ln C = 0.1657

C = 1.18

(days or ln days) 5 123 MCM527–CSRD2134 2.41 (2.33, 2.78) 4, 8 7 ln C = 0.1661

C = 1.18

1QTL position is defined relative to the first marker present in the genetic map for each chromosome; first marker positioned at 0 cM.
2Chromosome-wide F-statistics for P < 0.05 and <0.01 (as determined by permutation testing) are given in parentheses.
3Families within which a QTL effect was deemed significant using a t-test, when the half-sib QTL regression model was fitted across families.
4Vp refers to the phenotypic variance for each trait, after correction for all fitted fixed effects and covariates. The proportion of Vp due to the QTL was

estimated as 4 · (1 ) RMSQfull/RMSQreduced), where �full� is the model with the QTL effect fitted and �reduced� is the model without the QTL effect

(Knott et al. 1996).
5QTL allelic substitution effect, determined as the average of the estimated absolute values across families for which the QTL was significant. It

corresponds to the difference in trait values between the two QTL alleles that can be inherited from a sire heterozygous for the QTL.
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Figure 2 Across-age significance of QTL on

chromosome 20 for live weights and growth

rates, predicted using the Gompertz curve for

weekly intervals. The chromosome-wide sig-

nificance threshold (P < 0.05) was determined

by permutation testing. The nominal threshold

for significance (P < 0.05) was estimated for a

single test. The estimated QTL position and the

QTL-segregating families for each trait are

given in Table 5.
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4 and 6). For observed live weight, this QTL (i.e. same

position and segregating in the same two families; 4 and 6)

was observed at 16 weeks (Table 4). For observed weight at

12 weeks, QTL segregation was significant in one of the two

families (family 6; t-test = 2.85) but did not reach nominal

significance across all nine families (F-ratio = 1.79). In

summary, a growth rate QTL on chromosome 20 was

observed at and around the estimated age of maximum

growth, which subsequently manifested itself as a live

weight QTL.

Significant QTL were detected on chromosome 14 for

observed birth weight and 8-week weight, although the

families in which these QTL segregated differed. Although

QTL for predicted weight at birth and 8 weeks were not

deemed significant across all families, a birth weight QTL

segregated in family 6 and a QTL at 8 weeks was significant

in the same families (3 and 8) as for the observed 8-week

QTL. Further, a nominal QTL on chromosome 14 was

detected for growth rates at birth and weeks 1 and 2 in

families 3 and 8; these being the same families and chro-

mosomal location as seen for the 8-week weight QTL. Thus,

the trend of F-ratio trajectories (Fig. 3a) is the same as seen

on chromosome 20, i.e. the QTL significance varies with

time and statistical significance for growth rate is seen at

an earlier age than that for live weight. A further chro-

mosome 14 QTL became nominally significant in families 8

and 9 for growth rate at 17 weeks with maximum

significance at 24 weeks (Fig. 3b). This QTL may represent

a separate locus associated with late growth; however, it is

possible that different allelic effects for the same QTL are
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Figure 3 Across-age significance of (a) early

and (b) late growth QTL on chromosome 14.

Live weights and growth rates were predicted

using the Gompertz curve for weekly intervals.

The chromosome-wide significance threshold

(P < 0.05) was determined by permutation

testing. The nominal threshold for significance

(P < 0.05) was estimated for a single test. The

estimated QTL position and the QTL-segre-

gating families for each trait are given in

Tables 4 & 5.
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being detected for early and late growth rate. This

hypothesis is supported by the fact that in family 8, segre-

gation for the QTL was statistically significant in both

growth stages, with the estimated QTL effects for the two

occasions being of opposite sign.

Two additional chromosomes yielded significant QTL for

growth rate or live weight. The F-ratio trajectory across

age of a QTL for live weight on chromosome 3 is shown in

Fig. 4. This QTL was highly significant for estimated

weights at early ages (birth up to week 4) and significant

within (but not across) the same three families (2, 3, 8) for

observed weights at these ages. Yet, this QTL was not

detected for predicted growth rates at any age point. A

growth rate QTL on chromosome 18 was of nominal

significance at 8 weeks (Fig. 5). The F-ratio for this QTL

increased with age and became significant chromosome-

wise for growth rate at 10 weeks. The QTL significance

remained nominal up to 12 weeks. No QTL was detected

on this linkage group for observed or predicted live weights

within the age range of our dataset.

Finally, two QTL were detected for the log-transformed

age at point of inflection (population mean parameter C is

36.9 ± 3.02 days; Table 3). These QTL were seen on

chromosomes 14 and 5 (Table 4). No significant QTL were

found for estimated final weight (parameter A).

Inspection of the estimated QTL effects for each observed

or predicted growth trait (Tables 4 & 5) suggests that the

size of the detected QTL effects, in terms of the proportion of
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Figure 4 Across-age significance of QTL for

predicted weight on chromosome 3. Live

weight was predicted using the Gompertz

curve for weekly intervals. The chromosome-

wide significance threshold (P < 0.05) was

determined by permutation testing. The

nominal threshold for significance (P < 0.05)

was estimated for a single test. The estimated

QTL position and the QTL-segregating families

are given in Table 5.
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Figure 5 Across-age significance of QTL for

growth rate on chromosome 18. Growth rates

were predicted using the Gompertz curve for

weekly intervals. The chromosome-wide sig-

nificance threshold (P < 0.05) was determined

by permutation testing. The nominal threshold

for significance (P < 0.05) was estimated for a

single test. The estimated QTL position and the

QTL-segregating families are given in Table 5.
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phenotypic variance explained by the QTL at its maximum

significance, remained roughly constant across QTL

detected on different linkage groups. However, the absolute

size of distinct QTL effects varied according to the trait

means, i.e. live weight QTL effects increased with age,

whereas the growth rate effects initially increased, then

declined as growth rate slowed.

Discussion

Growth and its manifestation, live weight, are quantitative

traits of major importance for livestock species. Yet, al-

though it is an easily recorded phenotype, live weight is a

complex trait because it is the integral of all growth rates

prior to that age point, which in turn are a function of the

animal�s health, physiological state, strength of immune

system and even its ability to compete for sometimes limited

nutritional resources. Therefore, it would be beneficial to

determine aspects of growth governed by genetic effects,

and to utilize this information for genetic improvement. In

order to dissect the genetic components of growth, we: (i)

utilized longitudinal live weight information available for

growing lambs and (ii) defined informative descriptors of

growth and its components.

Univariate QTL analyses of sheep live weight phenotypes

at a particular point in time have been performed previously

(e.g. Walling et al. 2004; McRae et al. 2005). However,

isolation of live weights as single traits fails to capture the

correlations between the components underlying growth.

As a result, univariate studies have reduced power to detect

QTL compared with techniques that combine information

from multiple or longitudinal phenotypes.

Multivariate QTL models have previously been developed

for longitudinal traits. These approaches have either trans-

formed multivariate data into a single summary or composite

measure (e.g. Weller et al. 1996; Gilbert & Le Roy 2003), or

have modelled the time dependent QTL effects. As an example

of the latter, Ma et al. (2002) and Wu & Hou (2006) described

a maximum likelihood method for simple genetic structures

(backcross, F2, full-sibs). In this method, the QTL was as-

sumed to be a fixed effect with a specified number of alleles.

This approach was applied to study growth QTL in mice and

forest trees (Wu et al. 2004a,b, 2005). Alternatively, a lon-

gitudinal method using random regression was described by

Lund et al. (2002) for animals and Macgregor et al. (2005)

for human populations. Both modelled a multi-allelic QTL as

a random effect using random regression. This method en-

abled the analysis of more general pedigrees. Recently, Lund

et al. (2008) extended their model to allow for a genome scan

for QTL, testing their methodology against univariate QTL

analysis. Overall, these approaches allowed for a substantial

increase in power for QTL detection in longitudinal data. Yet a

number of issues arise when applying these techniques,

mainly regarding computational time and statistical diffi-

culties in estimating many model parameters simulta-

neously. These issues are affected by the modelling choice for

the QTL effect (fixed or random) and the need in random

regression models to fit polynomials of different order for

random QTL effects in order to capture fluctuations in the

QTL variance over time. In addition, it is usually difficult to

assign biological meaning to the polynomials chosen to

describe the QTL effect fitted in the model.

We chose an alternative approach for overcoming the

limitations of univariate QTL studies of longitudinal traits.

Table 5 Summary of the significant QTL from across-family QTL analyses of predicted live weights and growth rates, at the time point when the

significance was maximum.

Trait Chromosome

QTL

position

(cM)1 Marker interval F-ratio2

Age range of

significance

(weeks)3

Families

significant4

% Vp

explained

by QTL5

QTL

effect6

1-week weight (kg) 3 213 AGLA293–BL4/LYZ 3.46 (2.49, 2.86) Birth to 4 2, 3, 8 12 0.696

12-week weight (kg) 20 59 DRB1–TGLA387 2.24 (2.47, 2.93) 8–17 4, 6 6 3.19

1-week growth rate (kg/day) 14 105 ILSTS002–LSCV30 2.19 (2.32, 2.98) 1–2 3, 8 6 0.034

6-week growth rate (kg/day) 20 60 DRB1–TGLA387 2.97 (2.45, 2.96) 3–9 5, 6 10 0.051

10-week growth rate (kg/day) 18 59 TGLA337–TGLA122 2.25 (2.23, 2.77) 8–12 3, 7 6 0.025

24-week growth rate (kg/day) 14 99 ILSTS002–LSCV30 2.36 (2.37, 2.90) 17–28 8, 9 7 0.017

1QTL position is defined relative to the first marker present in the genetic map for each chromosome; first marker positioned at 0 cM.
2Chromosome-wide F-statistics for P < 0.05 and <0.01 (determined by permutation testing) are given in parentheses.
3Refers to chromosome-wide significance for all traits apart from 12-week weight and 1-week growth rate for which the age range of nominal

significance is given.
4Families within which a QTL effect was deemed significant using a t-test, when the half-sib QTL regression model was fitted across families.
5Vp refers to the phenotypic variance for each trait, after correction for all fitted fixed effects and covariate. The proportion of Vp due to the QTL was

estimated as 4 · (1 ) RMSQfull/RMSQreduced), where �full� is the model with the QTL effect fitted and �reduced� is the model without

the QTL effect (Knott et al. 1996).
6QTL allelic substitution effect, determined as the average of the estimated absolute values across families for which the QTL was significant. It

corresponds to the difference in trait values between the two QTL alleles that can be inherited from a sire heterozygous for the QTL.
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We sought to apply a multivariate method for the

extraction of all phenotypic information present in longi-

tudinal data and to then decompose the data in simpler

but more informative variables for QTL analyses. For this

purpose, we first modelled live weight measurements over

time using growth curve functions, of which the Gompertz

curve was found to be the most appropriate. By fitting the

Gompertz model, we used information on weight mea-

surements over time to estimate three parameters: A

(weight at maturity); B (maximum growth rate); C (age at

maximum growth rate). Thus, the use of the growth model

allowed a reduction in the number of independent traits.

Subsequently, predictions for weekly weights and growth

rates were combinations (non-linear and linear respec-

tively) of the three estimated model parameters. In this

respect, a multiple testing issue was largely avoided when

performing the QTL analyses.

Growth curve equations had previously been employed to

describe growth patterns, estimate growth parameters and

dissect polygenic (and maternal genetic) components of

growth variables in sheep (Lewis & Brotherstone 2002;

Lambe et al. 2006; Molina et al. 2007) and other species

(Wang & Zuidhof 2004). We extended the application of

growth models by treating growth curve variables or pre-

dictions as traits for QTL studies. An analogous approach

was employed by Rodriguez-Zas et al. (2002) to detect QTL

for dairy traits. In their study, they used a non-linear lac-

tation curve to model individual production curves and to

extract curve parameters. They then detected QTL for the

parameters for milk yield, protein and fat percentage, and

somatic cell score, within each of (but not across) three

grandsire families. Moreover, for some of these QTL,

Rodriguez-Zas et al. (2002) utilized the lactation equation to

estimate the trait values (e.g. milk yield, protein percentage)

over time for alternative QTL allelic effects. However, no

time-dependent predictions of the studied traits were made

from the lactation model and, thus, trends in the overall

QTL significance across time were not determined.

The procedure used in this study made no assumptions

about the distribution of the QTL effects or their changes

across time, and it allowed the detection of various QTL with

different expression (significance and variance) patterns

across time. QTL on chromosomes 3 and 14 had significant

effects during early growth, whereas a QTL on chromosome

20 had significant effects on growth variables around

intermediate/maximum growth. A growth rate QTL on

chromosome 18 was only significant for later growth points

(10 weeks). Further, the QTL on chromosome 14 seemed to

have contrasting allelic effects for early and late growth

(around 24 weeks of age). Although the possibility that two

distinct growth QTL were detected on chromosome 14

cannot be excluded based solely on results from these

analyses, our approach would have the ability to detect QTL

with alleles that have opposing action on growth in different

stages of the animal�s development.

The phenotypes analysed in this dataset were a subset of

those subjected to a heritability analysis by Riggio et al.

(2008). Our results, in which QTL effects differ with age, are

consistent with the results of Riggio et al. (2008) in which

inter-age genetic correlations declined as the time period

between weight measurements increased.

Another conclusion from the QTL analyses is that growth

rate phenotypes may allow more effective detection of

growth QTL effects than live weight phenotypes (either

actual or predicted). This may well be the result of live

weight being the more complex trait, i.e. the integral of all

previous growth rates to that point in time. Furthermore,

our analyses indicated that the same QTL have significant

effects earlier for growth rate than for live weight, explicable

by the fact that live weight is completely dependent on

previous growth rates. This is apparent in the QTL signifi-

cance trajectories for growth rate or predicted weight across

age on chromosomes 14 and 20 (Figs 2 & 3). This shift to

an earlier age for growth rate QTL on chromosomes 14 and

20 is observable because it lies within the age range of live

weights present in our dataset and described by the growth

curve. Failure to detect growth rate QTL on chromosome 3

and live weight QTL on chromosome 18 actually fits the

observed pattern. A growth rate QTL on chromosome 3 QTL

would be expected to be significant prior to birth. In an

analogous manner, the live weight QTL on chromosome 18

would manifest itself at a later age point than the maximum

age accurately covered by our data.

In conclusion, QTL analysis of growth parameters esti-

mated from the Gompertz function provided important

insight into growth as a multi-stage process in sheep.

Distinct loci seem to be active in at least three stages: early

growth, intermediate/maximum and late growth. In addi-

tion, our studies revealed a trend by which loci associated

with growth are apparent at a younger age for growth rate

than for live weight. Finally, as distinct loci govern different

growth stages, manipulation of the genetic factors under-

lying the different parts of an animal�s growth curve to

achieve distinct growth objectives may indeed be feasible.
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