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ABSTRACT

The main objective of this study was to estimate the
proportion of total genetic variance attributed to a
quantitative trait locus (QTL) on Bos taurus autosome
6 (BTA6) for milk production traits in the German Hol-
stein dairy cattle population. The analyzed chromo-
somal region on BTA6 spanned approximately 70 cM,
and contained 6 microsatellite markers. Milk produc-
tion data were obtained from routine genetic evaluation
for 4500 genotyped German Holstein bulls. Technical
aspects related to the estimation of model parameters
for a large data set from routine genotype recording
were outlined. A fixed QTL model and a random QTL
model were introduced to incorporate marker informa-
tion into parameter estimation and genetic evaluation.
Estimated QTL variances, expressed as the ratio of
QTL to polygenic variances, were 0.04, 0.03, and 0.07
for milk yield; 0.06, 0.08, and 0.14 for fat yield; and 0.04,
0.04, and 0.11 for protein yield, in the first 3 parities,
respectively. The estimated QTL positions, expressed
as distances from the leftmost marker DIK82, were 18,
31, and 17 cM for milk yield; 25, 17, and 9 cM for fat
yield; and 16, 30, and 17 cM for protein yield in the 3
respective parities. Because the data for the parameter
estimation well represented the current population of
active German Holstein bulls, the QTL parameter esti-
mates have been used in routine marker-assisted ge-
netic evaluation for German Holsteins.
(Key words: quantitative trait locus, variance compo-
nent, milk production trait, chromosome 6)

Abbreviation key: AIA = average information algo-
rithm, BTA6 = Bos taurus autosome 6, DYD = daughter
yield deviations, EDC = effective daughter contribu-
tion, IBD = identical by descent, MAS = marker-as-
sisted selection, MCMC = Monte Carlo Markov Chain,
RRTDM = random regression test day model, VIT =
genetic evaluation center.
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INTRODUCTION

The mixed inheritance model with random oligogenic
(i.e., originating from QTL) and polygenic effects has
been regarded as a promising statistical description of
genetic variation of quantitative traits (George et al.,
2000; Meuwissen and Goddard, 2001; Liu et al., 2002;
de Koning et al., 2003; Freyer et al., 2003). The possibil-
ity of incorporating information on (co)variances be-
tween individuals on average genome level (i.e., poly-
genic) as well as at a specific position within genome
(i.e., QTL) directly into the statistical model is espe-
cially suited for data with complex multigenerational
pedigrees such as in dairy cattle, whereas statistical
models with fixed QTL effects are less realistic approxi-
mations of the underlying modes of inheritance for out-
bred populations. However, proper separation between
variance components corresponding to those 2 random
effects is among the most important challenges in the
statistical analysis of data under the mixed inheritance
model. The separation of 2 random effects is done
through the differentiation of genetic similarity be-
tween individuals into 2 parts: 1) at a site-specific level,
related to the oligogenic component of genetic variance
due to similarity at a given position of the genome, and
expressed by the proportion of identity by descent (IBD)
between individuals, and 2) at a genome-average level,
related to the polygenic component of genetic variance
and expressed by the standard numerator relationship
matrix (Henderson, 1963). Because the vast majority
of QTL have not yet been physically mapped on the
bovine genome, indirect information coming from mo-
lecular markers linked to the QTL must be used to trace
their inheritance patterns and corresponding similarit-
ies between individuals.

The mixed inheritance models with random QTL ef-
fects can be used in preselection of young bulls for prog-
eny testing programs, selection of young animals with-
out or with little progeny information, or selection of
heifers as candidates for dams of bulls, following the
marker-assisted selection (MAS) scheme. For routine
application of MAS in dairy cattle populations, knowl-
edge of parameters of polygenic and QTL components
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of the genetic variance is the prerequisite. Such models
have been applied to data from the US Holstein popula-
tion by Zhang et al. (1998) and from a selected subset
of the German Holstein population by Freyer et al., in
univariate (2002) and multivariate (2003) frameworks.
Therefore, the main objective of the current study was
to estimate genetic parameters of the mixed inheritance
model for the German Holstein dairy population using
all available marker and phenotypic information. More-
over, technical aspects related the estimation of model
parameters for a large data set from routine genotype
recording were discussed.

MATERIALS AND METHODS

The MAS System for German Holsteins

For German Holstein cattle, MAS was initiated in
1995. In the first phase of the project, a genome scan
of 339 markers was conducted using a granddaughter
design, and applied to 1602 bulls from 19 grand-sire
families. The marker and phenotypic data were used
to localize the most significant QTL to be followed in
upcoming generations. Regions on 3 chromosomes were
chosen to represent QTL for milk production traits.
Consequently, the second phase of MAS covered further
genotyping of all young bulls and selected candidates
for bull dams for 13 markers mapped to the 3 chromo-
somes. Meanwhile, genotypes were updated for older
animals to achieve higher completeness of marker infor-
mation across generations. Up to February 2003, geno-
type information was available for 10,152 individuals.
The implementation of MAS in Germany involved (1)
breeding organizations providing tissues for genotyp-
ing, (2) universities conducting research, (3) labora-
tories providing genotypes, and (4) a genetic evaluation
center developing and implementing actual MAS evalu-
ations. Cooperation was coordinated by the German
Cattle Breeders Federation and by the genetic evalua-
tion center (VIT). A national system for management
of genotypic data, QTL mapping, and MAS was set up
at VIT (for details see Szyda et al., 2002). Its main
components comprised the (1) management of marker
data, (2) data analysis, and (3) interchange of data and
results between genotyping laboratories, breeding orga-
nizations, and VIT.

The analyzed material was a subset of bulls from the
active population of the German Holstein and reflects
the contents of the marker database in February 2003.
The data consisted of 4500 genotyped animals born
between 1985 and 2000. With nongenotyped parents
of the genotyped animals included, the full pedigree
contained 7841 animals.

Genotypic information. Based on the analysis of
the genome scan data, a region representing QTL for

Journal of Dairy Science Vol. 88, No. 1, 2005

milk, fat, and protein yields was identified on chromo-
some 6 (BTA6). The 6 markers mapped to this region
covered approximately 70 cM with an average in-
termarker distance of 14 cM (Thomsen et al., 2000).
Table 1 gives distances between the markers and their
basic characteristics based on all 10,152 animals.

Phenotypic information. The phenotypic records
(Table 2) were daughter yield deviations (DYD) ob-
tained from the official release of the May 2003 genetic
evaluation, and were based on random-regression and
a test-day model (RRTDM; Liu et al., 2001). The DYD
of the first 3 parities for milk, protein, and fat yields
were selected. The reliability associated with DYD was
expressed by effective daughter contributions (EDC),
approximated following Liu et al. (2004). The DYD in
the genotyped population were slightly higher than the
means of the whole population, indicating that, in gen-
eral, genetically superior individuals were chosen for
genotyping in the early stage of the MAS program.

Statistical Models

A fixed QTL model (model 1). The first model ap-
plied to the data included a fixed QTL effect specific to
each grandsire, expressed as a difference between a
heterozygous (say, Qq) and a homozygous (say, qq) ge-
notype:

y = Xβ + Zsqs + Za + e [1]

where y is a vector of DYD for bulls, expressed on a
305-d lactation basis, β is a vector of fixed effects for
year of birth, qs is a vector of fixed QTL effects for all
grand-sires, a is a vector of random polygenic effects
assuming a ∼ N(0,Gaσ

2
a) with Ga representing polygenic

relationships among individuals and σ2
a being a compo-

nent of the total additive genetic variance attributed
to polygenes, e is a vector of random errors assuming
e ∼ N(0,Dσ2

e) with σ2
e denoting the error variance and

matrix D containing a function of EDC (which is speci-
fied later in the text) on the diagonal, and X, Zs, and
Z are corresponding design matrices. The (co)variance
structure corresponding to model [1] is given by

var
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A random QTL model (model 2). The model in-
cluded a random QTL effect specific to each animal:

y = Xβ + Zqq + Za + e [2]

where q is a vector of random QTL effects; assuming
q ∼ N(0,Gqσ

2
q) with Gq representing relationship among

individuals at a QTL position expressed by proportions
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Table 1. Marker information in the genotyped population. Map locations estimated by Thomsen et al.
(2000).

Map Genotyped Heterozygous
location No. of individuals individuals

Marker (cM) alleles (no.) PIC1 (%)

DIK82 00.0 11 8184 0.766 40.2
IL97 22.1 4 4882 0.374 24.9
FBN14 30.6 6 5112 0.426 22.0
CSN3 38.6 4 5218 0.367 20.6
BP7 49.3 9 7138 0.645 35.1
BMC4203 69.8 10 6078 0.602 33.5

1PIC = Polymorphic information content.

of alleles being IBD and σ2
q is the component of the total

additive genetic variance due to the QTL; X, Zq, Z are
corresponding design matrices, and the other effects
are as specified above. Covariance structure between
the random effects of model [2] is defined as:

var
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Derivation of DYD. By definition, DYD of bulls are
averages of daughters’ performance adjusted for all
fixed and nongenetic random effects of the daughters
and genetic effects of their dams. The DYD are de-
regressed and are a more independent measure of phe-
notypic performance of bull’s daughters than are EBV
(VanRaden and Wiggans, 1991). The DYD were derived
following Liu et al. (2004), by absorbing the genetic
effects of daughters by using their records adjusted for
all other effects and for the EBV of the dams. For the
RRTDM, the DYD were modeled with the same mathe-
matical function as additive genetic effects and ex-
pressed in regression coefficients. The vector y con-
tained DYD on a 305-d lactation basis, which were com-
puted by summing up individual DYD of all DIM.

Table 2. Phenotypic information in the analyzed sample.

Parity Statistic1 Milk yield Fat yield Protein yield

x 659.65 ± 18.68 20.36 ± 0.69 21.54 ± 0.56
1 sx 568.90 21.07 17.18

min/max (−1426.41) / 2484.82 (−45.57) / 95.96 (−45.32) / 85.71

x 671.23 ± 23.19 19.61 ± 0.88 21.70 ± 0.73
2 sx 625.62 23.63 19.74

min/max (−1858.44) / 3044.72 (−66.48) / 114.10 (−57.10) / 89.50

x 631.87 ± 27.65 19.31 ± 1.07 19.12 ± 0.85
3 sx 638.97 24.74 19.71

min/max (−1955.58) / 3079.23 (−68.78) / 118.72 (−64.08) / 96.77

1Statistics: x = average yield with 95% confidence interval, sx = standard deviation, min/max denotes border
values.
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Derivation of weights on DYD. Reliability of a bull
due to daughter performance, denoted as R2

b, was ob-
tained from the approximation procedure of Liu et al.
(2004). The calculation of R2

b under an RRTDM ac-
counted for numbers of daughters, numbers of lacta-
tions per daughter, numbers of tests per lactation, and
the reliability of the EBV of the mates of the bull. The
least squares part, denoted φb, of the left-hand side in
the mixed model equation system corresponding to the
bull was derived as:

φb =
R2

b

1 − R2
b
σ−2

a =
kR2

b

1 − R2
b
σ−2

e = naσ
−2
e [3]

where na is the weight on DYD of the bull and repre-
sents the diagonal element in D for the bull, and k =
σ2

e/σ2
a is the ratio of residual to genetic variance.

Estimation of IBD Proportion

Estimation of the IBD matrix of the QTL was based
on the reversible jump Monte Carlo Markov Chain
(MCMC; Green, 1995) algorithm along the whole
marked chromosome region at a step-size of 1 cM. Be-
cause no formal monitoring of the MCMC algorithm
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convergence was performed, a long burn-in phase of
1000 rounds was used to allow sampling from the
proper marginal distributions. Also, a long spacing of
100 rounds was chosen between scored IBD matrix real-
izations to account for the fact that mixing of the param-
eter values might be poor for a large multigenerational
pedigree with many closely linked markers. The mode
of 91 realizations was considered as the final estimate
of the IBD matrix.

Estimation of Model Parameters

The restricted maximum likelihood (REML; Pat-
terson and Thompson, 1971) approach was applied for
estimating parameters of models [1] and [2]. Following
Gilmour et al. (1995), average information algorithm
(AIA) was used to maximize REML likelihood. The like-
lihood functions of models [1] and [2] were respectively
defined as:

ln L = −n − r
2 ln(2π) − 1

2(ln|R| + ln|Gaσ
2
a| − ln|C|

+ y′R−1y − y′R−1Xβ − y′R−1Zsqs − yR−1Za)

and

ln L = −n − r
2 ln(2π) − 1

2(ln|R| + ln|Gqσ
2
q|

+ ln|Gaσ
2
a| − ln|C| + y′R−1y − y′R−1Xβ [4]

− y′R−1Zqq − yR−1Za)

where n is the number of phenotypic records, r is the
rank of the design matrix for fixed effects, R = Dσ2

e is
residual (co)variance matrix, C is coefficient matrix of
the mixed model equations of model [2]. The estimated
effects comprised [β q a], and estimated variances
are σ2

a, σ2
e for model [1] and, additionally, σ2

q for model
[2]. For all the traits considered, the most probable
position of the QTL was estimated using model [1] based
on a likelihood profile constructed every 1 cM along the
marked region of BTA6. Parameters of model [2] were
estimated for the most probable QTL location estimated
by model [1], except for second lactation fat yield, for
which the parameters were estimated along the whole
marked chromosome region every 1 cM. Confidence in-
tervals for QTL position, σ̂2

a and σ̂2
q were obtained based

on a normal approximation of the asymptotic distribu-
tion of maximum likelihood estimates:

(θ̂ − zα/2σθ̂ < θ < θ̂ + zα/2σθ̂)
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where θ̂ is the estimate of QTL position, σ2
a, or σ2

q,
α is the probability of type I error, zα/2 is the critical

value corresponding to
α
2 type I error rate based on

the standard normal distribution, and σθ̂ is the

standard deviation of θ̂ approximated by

√ ∆2

ln L(θ̂ − ∆) + ln L(θ̂ + ∆) − 2 ln L(θ̂)
with ∆ set to 1

cM for QTL position, 0.3 for σ2
a, and 0.04 for σ2

q (Meyer
and Hill, 1992).

Hypotheses Testing

The likelihood ratio test statistic was used as a test-
ing criterion:

λ = −2 ln
L(M0)
L(M1)

[5]

where L(M1) and L(M0) are the maximum values of
likelihood functions underlying the unrestricted model
given above and a more parsimonious model without
QTL effects. Corresponding null and alternative
hypotheses were:

H1: qs ≠ 0 and H0: qs = 0 for model [1], with the
asymptotic null distribution of λ being χ2

1df.
H1: σ2

q > 0 and H0: σ2
q = 0 for model [2]. Because σ2

q

was constrained to positive values, the asymptotic null
distribution of λ followed a 50:50 mixture of 0 and
χ2

1df [for theoretical derivation, see Self and Liang
(1987); for empirical results based on livestock data
structure, see George et al. (2000)].

Implementation

The routine implementation of the estimation proce-
dure involved 5 steps:

1. Checking for data consistency by database rou-
tine programs.

2. Data preparation, check, and preliminary analysis
by a UNIX shell script, SAS (SAS Institute, 1999),
and Fortran programs.

3. Estimation of IBD matrices by the package LOKI
(Heath, 1997).

4. Inverting the IBD matrices using sparse matrix
routines implemented in the FSPAK package (Mis-
ztal and Perez-Enciso, 1998).

5. Estimation of model parameters by the ASREML
package (Gilmour et al., 1995) and prediction of
estimated polygenic and QTL effects.
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Table 3. Estimates of QTL positions with 95% confidence intervals based on fixed QTL model and estimates
of variance components underlying a random QTL model.1

Positions
from DIK82 σ̂2

q in kg
Trait Parity (cM) Significance σ̂2

a/σ̂2
e σ̂2

q/σ̂2
e σ̂2

q/σ̂2
a yield

Milk yield 1 18 ± 10 0.01129 4.58 0.20 0.04 10,111
2 31 ± 04 0.03682 14.44 0.44 0.03 9959
3 17 ± 10 0.00041 24.28 1.80 0.07 25,815

Fat yield 1 25 ± 09 0.00801 3.92 0.23 0.06 18.7
2 17 ± 09 0.00019 9.96 0.82 0.08 38.4
3 9 ± 12 0.00007 9.47 1.35 0.14 72.2

Protein yield 1 16 ± 11 0.02890 3.79 0.15 0.04 7.8
2 30 ± 08 0.01030 12.61 0.53 0.04 12.9
3 17 ± 10 0.00006 18.17 2.05 0.11 35.6

1Significance relates to a random QTL model and is expressed as the nominal type I error rate, σ̂2
e =

residual variance component, σ̂2
a = additive polygenic variance component, σ̂2

q = QTL variance component.

RESULTS

QTL Position

Due to its relatively low computational requirements,
model [1] was used to estimate location of QTL along
BTA6. The chromosome-wise significance levels, ex-
pressed as nominal significance penalized for the num-
ber of marker intervals following Bonferroni correction,
were very high (P < 0.00001) for all 9 parity × trait
combinations. The estimated positions of particular
QTL and their 95% confidence intervals obtained fol-
lowing Meyer and Hill (1992) are in Table 3. All the
positions were expressed as distances from the leftmost
marker DIK82. In summary, the estimated QTL posi-
tions for all 3 yield traits in first and third parities
and fat yield in second parity were located within the
leftmost interval flanked by DIK82 and IL97. For milk
and protein yields in second parity, the estimated QTL
positions were located within the next interval flanked
by IL97 and FBN14. Corresponding likelihood profiles,
shown in Figures 1, 2, and 3 for milk, fat, and protein
yields, respectively, indicated high levels of significance
for the first 2 marker intervals and high degrees of
similarity between traits and parities, with the excep-
tion of milk and protein yields in second parity.

Variance Components

Model [2] was applied to the data to partition total
variance into QTL, polygenic, and residual components.
Because estimation of these parameters required an
iterative solving of 15,706 equations at each QTL posi-
tion, it was computationally intensive and time consum-
ing. Thus, variance components were estimated only for
those chromosome positions that exhibited the highest
probability for the QTL, based on results from model
[1]. The resulting estimates are in Table 3. Among 3
parities, the ratio of QTL to polygenic variance was
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greatest for the third parity: 0.07 for milk yield, 0.14
for fat yield, and 0.11 for protein yield. Corresponding
QTL variance estimates for first and second lactations
were similar and varied between 0.03σ̂2

a for milk yield
in second parity and 0.08σ̂2

a for fat yield in second parity.
Despite the relatively low estimates of QTL variance,
the QTL term was significant for all parities and all
yield traits.

To examine how inaccurate QTL position estimates
affected estimates of QTL variance components, param-
eters of model [2] were estimated for second-parity fat
yield along the entire 70 cM chromosome region. Re-
sults presented in Figure 4 indicated that with increas-
ing distance from the more probable QTL position, the
QTL variance diminished and a significant portion of
QTL variance was absorbed into the polygenic compo-
nent, whereas the residual component remained rela-
tively stable along the chromosome. This effect was
summarized by a linear regression of σ̂2

e and σ̂2
a on dis-

tance from the most probable QTL position (in cM),
which yield regression coefficients of 0.04 ± 0.007 and
0.07 ± 0.007, respectively.

Likelihood of the Random QTL Model

As previously mentioned, a likelihood profile of the
random QTL model [2] was constructed for second-lac-
tation fat yield. It can be seen in Figure 5 that the
likelihood profile curve did not have a smooth shape
along the chromosome, indicating problems with find-
ing global maxima of the multidimensional likelihood
surface. Nevertheless, the test statistic was highest
throughout the first and a part of the second marker
interval (i.e., BTA6 region showing the highest proba-
bility of QTL location based on model [1]), followed by
a clear drop thereafter.

Because the likelihood profile in Figure 5 indicated
some difficulties in maximizing the likelihood function
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Figure 1. Bos taurus autosome 6 test statistic (λ) profiles for milk yield of first (�), second (×), and third (●) parities based on a fixed
QTL model.

underlying model [2], it was important to know how
much information, i.e., curvature, was available for es-
timating the variance components. For that purpose, a
2-D surface was constructed over the grid of σ2

a and
σ2

q around the σ̂2
a and σ̂2

q values for second-lactation fat
yield, while the other parameters of model [2] were
estimated using the AIA as implemented in the AS-
REML package. As shown in Figure 6, in the proximity
of the σ̂2

a and σ̂2
q values, the likelihood surface remained

rather flat, and equal likelihood values were obtained
for 34 different combinations of σ2

a and σ2
q. The 95%

confidence intervals approximated for the 2 variance
estimates were (5.8 and 14.2) for σ2

a and (0.27 and 1.37)
for σ2

q.

DISCUSSION

QTL for milk production traits on BTA6. Evi-
dence for QTL affecting milk production traits in the
neighborhood of the CN gene cluster has been reported
by many authors and found across various cattle breeds
and populations including Finnish Ayrshire (Velmala
et al., 1999; de Koning et al., 2001; Viitala et al., 2003),
Canadian Holstein (Nadesalingam et al., 2001), Dutch
Holstein (Spelman et al., 1996), German Holstein
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(Kuhn et al., 1999; Freyer et al., 2002, 2003), Israeli
Holstein (Ron et al., 2001), US Holstein (Georges et al.
1995; Zhang et al., 1998; Rodriguez-Zas et al., 2002),
and Norwegian Dairy Cattle (Olsen et al., 2002). Also
in our study, the location of QTL in the region marked
by DIK82-IL97-FBN14 corresponded with QTL posi-
tions estimated by other authors. Unlike many other
QTL, the chromosomal location of these QTL remained
surprisingly consistent among various populations de-
spite different materials and methods used in the analy-
ses. This result suggested that the QTL on BTA6 is one
of the most important loci to be considered in MAS.
Recently, Khatkar et al. (2004) performed a meta-anal-
ysis of available QTL mapping results, and concluded
that 2 QTL for milk yield and a single QTL for fat or
protein yield were segregating in the CN region on
BTA6.

Variance component estimates. The main goal of
our study was to estimate genetic parameters underly-
ing the random QTL model used for MAS, i.e., additive
polygenic and QTL variances for the German Holstein
population. Quantitative trait loci variance was already
estimated for by Zhang et al. (1998) for US Holsteins
and for the German Holsteins by Freyer et al. (2002,
2003). However, an important advantage of the current
study was the large size of the data sets: (1) more than
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Figure 2. Bos taurus autosome 6 test statistic (λ) profiles for fat yield of first (�), second (×), and third (●) parities based on a fixed
QTL model.

2 generations of genotyped individuals were available,
(2) the young genotyped bulls represented almost all of
the young bulls tested in German Holstein population
(although not all of those bulls have DYD available yet).
Those features mean that the data well represent the
current German Holstein population. The variance
components for milk and fat yields estimated by Zhang
et al. (1998) based on the sample of 1794 sons of 14
sires remained in close agreement with our variance
estimates. In general, QTL variances explained by the
markers on BTA6 represented only a small proportion
(<10%) of the additive genetic variance of milk produc-
tion traits in both populations. In contrast, the study
by Freyer et al. (2002, 2003) based on data from 562
sons of 5 sires gave much higher estimates of QTL
variance, especially for fat and protein yields, varying
between 23 and 50% of the total genetic variance de-
pending on the model and trait studied. We noticed
that there was a significant change in QTL variance
estimates in the 2 investigations by Freyer et al. using
the same data set. The QTL variance estimate for milk
yield increased from 8 to 16% of variance of DYD, but
significantly decreased from 50 to 20% for fat yield, and
from 50 to 28% for protein yield between the 2 studies,
even though the same univariate QTL model was used.
The differences in QTL variance estimates between our
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study and both studies of Freyer et al. were due to the
following reasons: 1) The trait used by Freyer et al. was
a yield trait on a combined lactation basis, whereas
we analyzed the yield traits in 3 lactations separately.
Because the 3 lactations were highly positively corre-
lated, higher QTL component can be expected for com-
bined lactation than for single lactations; 2) The depen-
dent variable in our study was DYD, whereas the depen-
dent variable in Freyer et al. (2002) was EBV. They
noted that DYD had higher proportion of nonQTL vari-
ance and lower QTL component than did EBV. In our
opinion, DYD is an unregressed measure of daughter
performance and should be preferred to EBV, despite
the fact that the use of DYD led to a lower QTL variance
component; 3) The DYD and EBV used by Freyer et al.
(2003) corresponded to a different genetic evaluation
model (Reents et al., 1995) and a different DYD calcula-
tion method; 4) The numbers of genotyped animals and
animals in pedigree were much higher in our study
than in the studies by Freyer et al. (2003) and the data
in their studies might not have been representative
of the overall population. Sampling variances of QTL
parameter estimates were significantly smaller in our
studies than in Freyer et al. (2003); and 5) We had
multiple generations of genotyped animals, in compari-
son with only 2 generations in both studies of Freyer
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Figure 3. Bos taurus autosome 6 test statistic (λ) profiles for protein yield of first (�), second (×), and third (●) parities based on a fixed
QTL model.

et al., (ancestors of the 5 grandsires were ignored in
their studies). However, adding more genotyped ances-
tors can significantly improve the tracing of origin of
marker alleles and IBD calculation for QTL.

Considering the estimates of variance components
along the marked region of BTA6 in Figure 4, we con-
cluded that model [2] was well able to differentiate
between the QTL and polygenic variances, because with
increasing distance from the most probable QTL posi-
tion, the proportion of QTL component in the total ge-
netic variance diminished. In contrast, the residual
component was not confounded with genetic compo-
nents, as its estimates remained stable along the chro-
mosome.

Compared with yield deviations of cow, DYD of bulls
had a much smaller proportion of residual variance,
due to higher reliabilities associated with the DYD.
Error variance of the original polygenic RRTDM could
not be accurately estimated based on the DYD in the
parameter estimation for QTL variance. The difference
between the estimated polygenic variance and original
RRTDM genetic variance amounted to 5 to 10%, which
can be explained by different samples of selected ani-
mals in both parameter estimations. The RRTMD was
applied to cows with test-day records (Liu et al., 2001)
vs. genotyped bulls with DYD for this study. In addition
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different pedigree structures were considered: sire and
dam of animals for RRTDM (Liu et al., 2001) vs. male
ancestors of bulls only in this study. Another aspect of
using DYD as trait representation was weighting of
residual variances in the parameter estimation. In our
case, initial attempts to use weights based on EDC
resulted in convergence problems by the AIA. Because
DYD of all bulls had comparable and high reliabilities
in current study, the fact that DYD were assigned to
equal weights should not affect much the ratios of QTL
to polygenic variances.

Likelihood surface. Comparison of likelihood pro-
file shapes based on model [1] and model [2] (Figure 5)
showed good agreement, because both models indicated
the same 2 intervals as the most probable QTL location.
In terms of QTL position, Zhang et al. (1998) obtained
similar estimates using both least squares and variance
component models as well. In addition, test statistics
profiles for the 2 methods shown by Freyer et al. (2002)
remained in good agreement. Figure 5 revealed an unfa-
vorable feature of the likelihood profile resulting from
model [2], as the likelihood values were not smooth
along the analyzed region, indicating problems in con-
vergence by the AIA in the neighborhood of maximum
of the likelihood function. As shown in Figure 6, for the
axes defined by variance components, the likelihood
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Figure 4. Partitioning of the total variance for fat yield of second parity between residual (�), additive polygenic (�), and QTL (�),
based on a random QTL model. H0 represents partitioning under the null hypothesis of no QTL. The QTL position estimated under a fixed
QTL model is marked with an arrow.

surface was rather flat, not only at the very maximum
but also in its proximity, which most likely caused the
observed optimization problems.

Estimation of IBD proportions. As already pointed
out by Grignola et al. (1996), the estimation of IBD
relationships for large, multigenerational pedigrees
was computationally very demanding. The first method
for calculating IBD proportions for such pedigrees was
proposed by Fernando and Grossman (1989) for a single
marker scenario. However, using one marker at a time
is not well suited for analyzing data from actual dairy
cattle populations with a complex pedigree structure,
because there are often uninformative or missing
marker genotypes. Since the above-mentioned seminal
study, a number of methods for calculating IBD coeffi-
cients have been developed, which can be mainly classi-
fied into deterministic and MCMC-based approaches,
based on the estimation method, or into marker interval
and multiple-marker based approaches, according to
the use of marker information. The main advantage of
the deterministic approach lies in its speed of computa-
tion; however, no method exists at present that is able
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to use all available marker haplotype and pedigree in-
formation. Pong-Wong et al. (2001) and Liu et al. (2002)
proposed methods that can account for a marker
bracket. The multiple marker approach was developed
by Almasy and Blangero (1998), but it was only applica-
ble to special types of relationships between individu-
als. Meuwissen and Goddard (2001) presented a
multimarker approach capable of tracing historical re-
lationships not contained in the recorded part of a pedi-
gree, but available relationship information was not
explicitly used in the method. Recently, Lund et al.
(2003) combined the information on historical and ob-
served relationships following Meuwissen and Goddard
(2001) and Wang et al. (1995), respectively for the 2
components. An overview of deterministic IBD estima-
tion methods was given by George et al. (2000). The
MCMC-based approaches were more flexible in terms
of using marker and complex pedigree information, but
they were time consuming, which limited their applica-
tion to the analysis of large data sets. Additionally,
issues related to monitoring convergence and irreduc-
ibility of the algorithms has not been well defined yet.
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Figure 5. Bos taurus autosome 6 test statistic (λ) profiles for fat yield of second parity based on a fixed QTL model (�) and a random
QTL model (●).

The approach of Heath (1997) was among the first appli-
cations of MCMC to the analysis of large complex pedi-
grees, followed for example, by Xu and Gessler (1998)
and Perez-Enciso et al. (2000). Grignola et al. (1996)
proposed an intermediate approach, in which MCMC
was used for the estimation of IBD among the geno-
typed part of the parental pedigree and then a deter-
ministic approach to obtain IBD coefficient was used
for nonparents.

The approach of Heath (1997) as implemented in the
LOKI package, was used for the estimation of IBD pro-
portions in the current study, which were then used
in the parameter estimation under model [2] via the
ASREML package. The simulation results by George
et al. (2000) demonstrated that by using the aforemen-
tioned implementation, both variance components and
QTL positions can be accurately estimated even in case
of missing marker data. An application of this approach
to livestock data was presented by de Koning et al.
(2003). The results of simulation studies carried by
Sørensen et al. (2002) showed that the algorithm pro-
vides accurate estimates of IBD proportions.

Using genomic information. Although the original
plan in Germany was to acquire not only male but also
female genotypes in the development of routine geno-
typing and MAS, data available for the current analysis
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consisted of genotypes of bulls only. Because of the large
number of genotyped bulls, genotypes of some dams
and maternal grandsires could have been recon-
structed. Recently, Bolard and Boichard (2002) showed
how the information on maternal grand-sire genotypes
and, consequently, on QTL transmissions can be incor-
porated in the QTL mapping, albeit in the fixed QTL
framework. The marker information on female animals
should be, whenever possible, incorporated in both pa-
rameter estimation and routine genetic evaluation.

CONCLUSIONS

Based on a random QTL model, QTL variance for
milk production traits was estimated using a large
marker and phenotypic data set for the German Hol-
stein population. The estimated QTL variances ac-
counted for 4 to 14% of polygenic variances for milk,
fat, and protein yields. These QTL parameter estimates
have been used in routine marker-assisted genetic eval-
uations of production traits in Germany, based on DYD
of bulls and yield deviations of cows. Our experience
showed that the MCMC-based algorithm for estimating
IBD proportions was able to use the most of available
pedigree and marker information. On the other hand,
the MCMC-based methods seemed to be rather time
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Figure 6. Likelihood surface over σ2
a and σ2

q around the σ̂2
a and σ̂2

q for fat yield of second parity based on a random QTL model.

consuming for routine MAS in large data sets currently.
Therefore, efficient and accurate deterministic ap-
proaches would be more appealing for routine MAS
application. The random QTL model with both random
QTL and polygenic effects accounted for relationships
among animals on the genome level as well as at a
specific genome position, which makes it applicable for
routine genetic evaluation of dairy cattle. The DYD
were used as dependent variables and associated EDC
as a function for weighting factors in the marker-as-
sisted genetic evaluation system. Our current MAS ge-
netic evaluation system analyzes data from one lacta-
tion at a time only, although routine genetic evaluation
of production traits has been conducted with a multiple-
lactation RRTDM (Liu et al., 2004). A logical further
development of the random QTL model would be to
extend it from the current single-lactation model to a
multiple-lactation model to account for the correlations
between lactations.
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W. Krämer, G. Thaller, K. Rønningen, and S. Lien. 2002. A ge-
nome scan for quantitative trait loci affecting milk production in
Norwegian Dairy Cattle. J. Dairy Sci. 85:3124–3130.

Patterson, H. D., and R. Thompson. 1971. Recovery of interblock
information when block sizes are unequal. Biometrika 58:545–
554.

Journal of Dairy Science Vol. 88, No. 1, 2005

Perez-Enciso, M., L. Varona, and M. F. Rothschild. 2000. Computa-
tion of identity by descent probabilities conditional on DNA mark-
ers via a Monte Carlo Markov Chain method. Genet. Sel. Evol.
32:467–482.

Pong-Wong, R., A. W. George, J. A. Woolliams, and C. S. Haley. 2001.
A simple and rapid method for calculating identity-by-descent
matrices using multiple markers. Genet. Sel. Evol. 33:453–471.

Reents, R., J. Jamrozik, L. R. Schaeffer, and J. C. M. Dekkers. 1995.
Estimation of genetic parameters for test day records of somatic
cell score. J. Dairy Sci. 78:2847–2857.

Rodriguez-Zas, S. L., B. R. Southey, D. W. Heyen, and H. A. Lewin.
2002. Interval and composite interval mapping of somatic cell
score, yield, and components of milk in dairy cattle. J. Dairy Sci.
85:2681–2691.

Ron, M., D. Klinger, E. Feldmesser, E. Seroussi, E. Ezra, and J. I.
Weller. 2001. Multiple quantitative trait locus analysis of bovine
chromosome 6 in the Israeli Holstein population by a daughter
design. Genetics 159:727–735.

SAS Institute. 1999. SAS User’s Guide. Statistics, Version 8.2 ed.
SAS Inst., Inc., Cary, NC.

Self, S. C., and K. Y. Liang. 1987. Asymptotic properties of maximum
likelihood estimators and likelihood ratio tests under non-stan-
dard conditions. J. Am. Stat. Assoc. 82:605–610.

Sørensen, A. C., R. Pong-Wong, J. J. Windig, and J. A. Woolliams.
2002. Precision of methods for calculating identity-by-descent
matrices using multiple markers. Genet. Sel. Evol. 34:557–579.

Spelman, R. J., W. Coppieters, L. Karim, J. A. van Arendonk, and
H. Bovenhuis. 1996. Quantitative trait loci analysis for five milk
production traits on chromosome six in the Dutch Holstein-
Friesian population. Genetics 144:1799–1808.

Szyda, J., Z. Liu, R. Maschka, F. Reinhardt, and R. Reents. 2002.
Computer system for routine QTL detection and genetic evalua-
tion under a mixed inheritance model in dairy cattle. Proc. 7th
World Congr. Genet. Appl. Livest. Prod., Montpellier, France,
XXXIII:249–250.

Thomsen, H., N. Reinsch, N. Xu, C. Looft, S. Grupe, C. Kühn, G.
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